DUNE PDELab (unstable)
Implementation of the Geometry interface for affine geometries. More...
#include <dune/geometry/affinegeometry.hh>
Public Types | |
| typedef ct | ctype |
| Type used for coordinates. | |
| typedef FieldVector< ctype, mydimension > | LocalCoordinate |
| Type for local coordinate vector. | |
| typedef FieldVector< ctype, coorddimension > | GlobalCoordinate |
| Type for coordinate vector in world space. | |
| typedef ctype | Volume |
| Type used for volume. | |
| typedef FieldMatrix< ctype, mydimension, coorddimension > | JacobianTransposed |
| Type for the transposed Jacobian matrix. | |
| typedef FieldMatrix< ctype, coorddimension, mydimension > | JacobianInverseTransposed |
| Type for the transposed inverse Jacobian matrix. | |
| typedef FieldMatrix< ctype, coorddimension, mydimension > | Jacobian |
| Type for the Jacobian matrix. | |
| typedef FieldMatrix< ctype, mydimension, coorddimension > | JacobianInverse |
| Type for the inverse Jacobian matrix. | |
Public Member Functions | |
| AffineGeometry ()=default | |
| Constructs an empty geometry. More... | |
| AffineGeometry (const ReferenceElement &refElement, const GlobalCoordinate &origin, const JacobianTransposed &jt) | |
| Create affine geometry from reference element, one vertex, and the Jacobian matrix. | |
| AffineGeometry (Dune::GeometryType gt, const GlobalCoordinate &origin, const JacobianTransposed &jt) | |
| Create affine geometry from GeometryType, one vertex, and the Jacobian matrix. | |
| template<class CoordVector > | |
| AffineGeometry (const ReferenceElement &refElement, const CoordVector &coordVector) | |
| Create affine geometry from reference element and a vector of vertex coordinates. | |
| template<class CoordVector > | |
| AffineGeometry (Dune::GeometryType gt, const CoordVector &coordVector) | |
| Create affine geometry from GeometryType and a vector of vertex coordinates. | |
| bool | affine () const |
| Always true: this is an affine geometry. | |
| Dune::GeometryType | type () const |
| Obtain the type of the reference element. | |
| int | corners () const |
| Obtain number of corners of the corresponding reference element. | |
| GlobalCoordinate | corner (int i) const |
| Obtain coordinates of the i-th corner. | |
| GlobalCoordinate | center () const |
| Obtain the centroid of the mapping's image. | |
| GlobalCoordinate | global (const LocalCoordinate &local) const |
| Evaluate the mapping. More... | |
| LocalCoordinate (const GlobalCoordinate &global) const | |
| Evaluate the inverse mapping. More... | |
| ctype | integrationElement (const LocalCoordinate &local) const |
| Obtain the integration element. More... | |
| Volume | volume () const |
| Obtain the volume of the element. | |
| const JacobianTransposed & | jacobianTransposed (const LocalCoordinate &local) const |
| Obtain the transposed of the Jacobian. More... | |
| const JacobianInverseTransposed & | jacobianInverseTransposed (const LocalCoordinate &local) const |
| Obtain the transposed of the Jacobian's inverse. More... | |
| Jacobian | jacobian (const LocalCoordinate &local) const |
| Obtain the Jacobian. More... | |
| JacobianInverse | jacobianInverse (const LocalCoordinate &local) const |
| Obtain the Jacobian's inverse. More... | |
Static Public Attributes | |
| static const int | mydimension = mydim |
| Dimension of the geometry. | |
| static const int | coorddimension = cdim |
| Dimension of the world space. | |
Detailed Description
class Dune::AffineGeometry< ct, mydim, cdim >
Implementation of the Geometry interface for affine geometries.
- Template Parameters
-
ct Type used for coordinates mydim Dimension of the geometry cdim Dimension of the world space
Constructor & Destructor Documentation
◆ AffineGeometry()
|
default |
Constructs an empty geometry.
This constructor creates an empty (invalid) affine geometry. It may not be used in any way except for assigning other affine geometries to it. After assigning a valid geometry, it may be used without restrictions.
Member Function Documentation
◆ global()
|
inline |
Evaluate the mapping.
- Parameters
-
[in] local local coordinate to map
- Returns
- corresponding global coordinate
References Dune::AffineGeometry< ct, mydim, cdim >::global(), and Dune::DenseMatrix< MAT >::umtv().
Referenced by Dune::AffineGeometry< ct, mydim, cdim >::center(), Dune::AffineGeometry< ct, mydim, cdim >::corner(), Dune::AffineGeometry< ct, mydim, cdim >::global(), and Dune::AffineGeometry< ct, mydim, cdim >::LocalCoordinate().
◆ integrationElement()
|
inline |
Obtain the integration element.
If the Jacobian of the mapping is denoted by $J(x)$, the integration integration element \(\mu(x)\) is given by
\[ \mu(x) = \sqrt{|\det (J^T(x) J(x))|}.\]
- Parameters
-
[in] local local coordinate to evaluate the integration element in
- Returns
- the integration element \(\mu(x)\).
◆ jacobian()
|
inline |
Obtain the Jacobian.
- Parameters
-
[in] local local coordinate to evaluate Jacobian in
- Returns
- a copy of the transposed of the Jacobian
References Dune::FieldMatrix< K, ROWS, COLS >::transposed().
◆ jacobianInverse()
|
inline |
Obtain the Jacobian's inverse.
The Jacobian's inverse is defined as a pseudo-inverse. If we denote the Jacobian by \(J(x)\), the following condition holds:
\[J^{-1}(x) J(x) = I.\]
References Dune::FieldMatrix< K, ROWS, COLS >::transposed().
◆ jacobianInverseTransposed()
|
inline |
Obtain the transposed of the Jacobian's inverse.
The Jacobian's inverse is defined as a pseudo-inverse. If we denote the Jacobian by \(J(x)\), the following condition holds:
\[J^{-1}(x) J(x) = I.\]
◆ jacobianTransposed()
|
inline |
Obtain the transposed of the Jacobian.
- Parameters
-
[in] local local coordinate to evaluate Jacobian in
- Returns
- a reference to the transposed of the Jacobian
◆ LocalCoordinate()
|
inline |
Evaluate the inverse mapping.
- Parameters
-
[in] global global coordinate to map
- Returns
- corresponding local coordinate
The returned local coordinate y minimizes
on the entire affine hull of the reference element. This degenerates to the inverse map if the argument y is in the range of the map.
References Dune::AffineGeometry< ct, mydim, cdim >::global(), and Dune::DenseMatrix< MAT >::mtv().
The documentation for this class was generated from the following file:
- dune/geometry/affinegeometry.hh
|
Legal Statements / Impressum |
Hosted by TU Dresden & Uni Heidelberg |
generated with Hugo v0.111.3
(Nov 2, 23:43, 2025)