Dune Core Modules (unstable)

raviartthomas1cube3dlocalinterpolation.hh
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 // SPDX-FileCopyrightInfo: Copyright © DUNE Project contributors, see file LICENSE.md in module root
4 // SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5 #ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
6 #define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
7 
8 #include <vector>
9 
11 
12 namespace Dune
13 {
22  template<class LB>
24  {
25 
26  public:
27 
33  RT1Cube3DLocalInterpolation (std::bitset<6> s = 0)
34  {
35  for (size_t i=0; i<6; i++)
36  sign_[i] = (s[i]) ? -1.0 : 1.0;
37 
38  n_[0] = {-1.0, 0.0, 0.0};
39  n_[1] = { 1.0, 0.0, 0.0};
40  n_[2] = { 0.0, -1.0, 0.0};
41  n_[3] = { 0.0, 1.0, 0.0};
42  n_[4] = { 0.0, 0.0, -1.0};
43  n_[5] = { 0.0, 0.0, 1.0};
44  }
45 
54  template<class F, class C>
55  void interpolate (const F& f, std::vector<C>& out) const
56  {
57  // f gives v*outer normal at a point on the edge!
58  typedef typename LB::Traits::RangeFieldType Scalar;
59  typedef typename LB::Traits::DomainFieldType Vector;
60 
61  out.resize(36);
62  fill(out.begin(), out.end(), 0.0);
63 
64  const int qOrder = 3;
65  const auto& rule1 = QuadratureRules<Scalar,2>::rule(GeometryTypes::cube(2), qOrder);
66 
67  for (auto&& qp : rule1)
68  {
69  Dune::FieldVector<Scalar,2> qPos = qp.position();
70  typename LB::Traits::DomainType localPos;
71 
72  localPos = {0.0, qPos[0], qPos[1]};
73  auto y = f(localPos);
74  out[0] += (y[0]*n_[0][0] + y[1]*n_[0][1] + y[2]*n_[0][2])*qp.weight()*sign_[0];
75  out[6] += (y[0]*n_[0][0] + y[1]*n_[0][1] + y[2]*n_[0][2])*(2.0*qPos[0] - 1.0)*qp.weight();
76  out[12] += (y[0]*n_[0][0] + y[1]*n_[0][1] + y[2]*n_[0][2])*(2.0*qPos[1] - 1.0)*qp.weight();
77  out[18] += (y[0]*n_[0][0] + y[1]*n_[0][1] + y[2]*n_[0][2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*qp.weight();
78 
79  localPos = {1.0, qPos[0], qPos[1]};
80  y = f(localPos);
81  out[1] += (y[0]*n_[1][0] + y[1]*n_[1][1] + y[2]*n_[1][2])*qp.weight()*sign_[1];
82  out[7] += (y[0]*n_[1][0] + y[1]*n_[1][1] + y[2]*n_[1][2])*(1.0 - 2.0*qPos[0])*qp.weight();
83  out[13] += (y[0]*n_[1][0] + y[1]*n_[1][1] + y[2]*n_[1][2])*(1.0 - 2.0*qPos[1])*qp.weight();
84  out[19] += (y[0]*n_[1][0] + y[1]*n_[1][1] + y[2]*n_[1][2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*qp.weight();
85 
86  localPos = {qPos[0], 0.0, qPos[1]};
87  y = f(localPos);
88  out[2] += (y[0]*n_[2][0] + y[1]*n_[2][1] + y[2]*n_[2][2])*qp.weight()*sign_[2];
89  out[8] += (y[0]*n_[2][0] + y[1]*n_[2][1] + y[2]*n_[2][2])*(1.0 - 2.0*qPos[0])*qp.weight();
90  out[14] += (y[0]*n_[2][0] + y[1]*n_[2][1] + y[2]*n_[2][2])*(2.0*qPos[1] - 1.0)*qp.weight();
91  out[20] += (y[0]*n_[2][0] + y[1]*n_[2][1] + y[2]*n_[2][2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*qp.weight();
92 
93  localPos = {qPos[0], 1.0, qPos[1]};
94  y = f(localPos);
95  out[3] += (y[0]*n_[3][0] + y[1]*n_[3][1] + y[2]*n_[3][2])*qp.weight()*sign_[3];
96  out[9] += (y[0]*n_[3][0] + y[1]*n_[3][1] + y[2]*n_[3][2])*(2.0*qPos[0] - 1.0)*qp.weight();
97  out[15] += (y[0]*n_[3][0] + y[1]*n_[3][1] + y[2]*n_[3][2])*(1.0 - 2.0*qPos[1])*qp.weight();
98  out[21] += (y[0]*n_[3][0] + y[1]*n_[3][1] + y[2]*n_[3][2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*qp.weight();
99 
100  localPos = {qPos[0], qPos[1], 0.0};
101  y = f(localPos);
102  out[4] += (y[0]*n_[4][0] + y[1]*n_[4][1] + y[2]*n_[4][2])*qp.weight()*sign_[4];
103  out[10] += (y[0]*n_[4][0] + y[1]*n_[4][1] + y[2]*n_[4][2])*(1.0 - 2.0*qPos[0])*qp.weight();
104  out[16] += (y[0]*n_[4][0] + y[1]*n_[4][1] + y[2]*n_[4][2])*(1.0 - 2.0*qPos[1])*qp.weight();
105  out[22] += (y[0]*n_[4][0] + y[1]*n_[4][1] + y[2]*n_[4][2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*qp.weight();
106 
107  localPos = {qPos[0], qPos[1], 1.0};
108  y = f(localPos);
109  out[5] += (y[0]*n_[5][0] + y[1]*n_[5][1] + y[2]*n_[5][2])*qp.weight()*sign_[5];
110  out[11] += (y[0]*n_[5][0] + y[1]*n_[5][1] + y[2]*n_[5][2])*(2.0*qPos[0] - 1.0)*qp.weight();
111  out[17] += (y[0]*n_[5][0] + y[1]*n_[5][1] + y[2]*n_[5][2])*(2.0*qPos[1] - 1.0)*qp.weight();
112  out[23] += (y[0]*n_[5][0] + y[1]*n_[5][1] + y[2]*n_[5][2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*qp.weight();
113  }
114 
115  const auto& rule2 = QuadratureRules<Vector,3>::rule(GeometryTypes::cube(3), qOrder);
116  for (auto&& qp : rule2)
117  {
118  FieldVector<double,3> qPos = qp.position();
119 
120  auto y = f(qPos);
121  out[24] += y[0]*qp.weight();
122  out[25] += y[1]*qp.weight();
123  out[26] += y[2]*qp.weight();
124  out[27] += y[0]*qPos[1]*qp.weight();
125  out[28] += y[0]*qPos[2]*qp.weight();
126  out[29] += y[1]*qPos[0]*qp.weight();
127  out[30] += y[1]*qPos[2]*qp.weight();
128  out[31] += y[2]*qPos[0]*qp.weight();
129  out[32] += y[2]*qPos[1]*qp.weight();
130  out[33] += y[0]*qPos[1]*qPos[2]*qp.weight();
131  out[34] += y[1]*qPos[0]*qPos[2]*qp.weight();
132  out[35] += y[2]*qPos[0]*qPos[1]*qp.weight();
133  }
134  }
135 
136  private:
137  // Facet orientations
138  std::array<typename LB::Traits::RangeFieldType, 6> sign_;
139 
140  // Facet normals
141  std::array<typename LB::Traits::DomainType, 6> n_;
142  };
143 }
144 #endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:95
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:324
First order Raviart-Thomas shape functions on the reference hexahedron.
Definition: raviartthomas1cube3dlocalinterpolation.hh:24
void interpolate(const F &f, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas1cube3dlocalinterpolation.hh:55
RT1Cube3DLocalInterpolation(std::bitset< 6 > s=0)
Make set number s, where 0 <= s < 64.
Definition: raviartthomas1cube3dlocalinterpolation.hh:33
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:462
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:235
Dune namespace.
Definition: alignedallocator.hh:13
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (Apr 27, 22:29, 2024)