DUNE-FUNCTIONS (unstable)

polynomial.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3
4// SPDX-FileCopyrightText: Copyright © DUNE Project contributors, see file AUTHORS.md
5// SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception OR LGPL-3.0-or-later
6
7#ifndef DUNE_FUNCTIONS_ANALYTICFUNCTIONS_POLYNOMIAL_HH
8#define DUNE_FUNCTIONS_ANALYTICFUNCTIONS_POLYNOMIAL_HH
9
10#include <cmath>
11#include <initializer_list>
12#include <vector>
13
14
15#include <dune/common/hybridutilities.hh>
16
17namespace Dune {
18namespace Functions {
19
20namespace Impl {
21
22 // Compute coefficients of derivative of polynomial.
23 // Overload for std::vector
24 template<class K, class Allocator>
25 auto polynomialDerivativeCoefficients(const std::vector<K, Allocator>& coefficients) {
26 if (coefficients.size()==0)
27 return std::vector<K, Allocator>();
28 std::vector<K, Allocator> dpCoefficients(coefficients.size()-1);
29 for (size_t i=1; i<coefficients.size(); ++i)
30 dpCoefficients[i-1] = coefficients[i]*K(i);
31 return dpCoefficients;
32 }
33
34 // Compute coefficients of derivative of polynomial.
35 // Overload for std::array
36 template<class K, std::size_t n>
37 auto polynomialDerivativeCoefficients(const std::array<K, n>& coefficients) {
38 if constexpr (n==0)
39 return coefficients;
40 else
41 {
42 std::array<K, n-1> dpCoefficients;
43 for (size_t i=1; i<coefficients.size(); ++i)
44 dpCoefficients[i-1] = coefficients[i]*K(i);
45 return dpCoefficients;
46 }
47 }
48
49 // Compute coefficients of derivative of polynomial.
50 // Helper function for the std::integer_sequence overload.
51 // With C++20 this can be avoided, because lambda function
52 // can partially specify template arguments which allows
53 // to do the same inline.
54 template<class I, I i0, I... i, class J, J j0, J... j>
55 auto polynomialDerivativeCoefficientsHelper(std::integer_sequence<I, i0, i...>, std::integer_sequence<J, j0, j...>) {
56 return std::integer_sequence<I, i*I(j)...>();
57 }
58
59 // Compute coefficients of derivative of polynomial.
60 // Overload for std::integer_sequence
61 template<class I, I... i>
62 auto polynomialDerivativeCoefficients(std::integer_sequence<I, i...> coefficients) {
63 if constexpr (sizeof...(i)==0)
64 return coefficients;
65 else
66 return polynomialDerivativeCoefficientsHelper(coefficients, std::make_index_sequence<sizeof...(i)>());
67 }
68
69 // Compute coefficients of derivative of polynomial.
70 // Overload for std::tuple
71 template<class...T>
72 auto polynomialDerivativeCoefficients(const std::tuple<T...>& coefficients) {
73 if constexpr (sizeof...(T)==0)
74 return coefficients;
75 else
76 {
77 // Notice that std::multiplies<void> has issues with signed types.
78 // E.g., `decltype(-2,2ul)` is `long unsigned int`.
79 // Hence the same is deduced as return type in std::multiplies.
80 // To avoid this, we explicitly pass the exponent `i+1` as signed type.
81 // If the coefficient is signed, both types are now signed and
82 // so is the deduced result type of std::multiplies.
83 auto mult = Dune::Hybrid::hybridFunctor(std::multiplies());
84 return Dune::unpackIntegerSequence([&](auto... i) {
85 return std::tuple(mult(std::get<i+1>(coefficients),
86 std::integral_constant<long signed int, (long signed int)(i+1)>()) ...);
87 }, std::make_index_sequence<sizeof...(T)-1>());
88 }
89 }
90
91} // namespace Impl in Dune::Functions::
92
93
94
121template<class K, class C=std::vector<K>>
123{
124 template<class CC>
125 struct IsIntegerSequence : public std::false_type {};
126
127 template<class I, I... i>
128 struct IsIntegerSequence<std::integer_sequence<I, i...>> : public std::true_type {};
129
139 template <typename Coefficient>
140 static void add(K& y, const Coefficient &c)
141 {
142 if constexpr (!IsIntegralConstant<Coefficient>::value)
143 {
144 if (c!=0)
145 y += c;
146 }
147 else
148 y += c;
149 }
150
151public:
152
154 using Coefficients = C;
155
157 Polynomial() = default;
158
168 coefficients_(std::move(coefficients))
169 {}
170
176 K operator() (const K& x) const
177 {
178 using namespace Dune::Indices;
179
180 auto n = Dune::Hybrid::size(coefficients_);
181
182 // Explicitly handling the corner case of an empty coefficient set
183 // allows to save one multiplication.
184 return Hybrid::ifElse(Hybrid::equal_to(n, _0),
185 [&](auto id) { /* then */
186 // No coefficients at all
187 return K(0);
188 },
189 [&](auto id) { /* else */
190 // Do the Horner scheme knowing that there is at least one coefficient
191 K y = Hybrid::elementAt(coefficients_, Hybrid::minus(id(n), _1) );
192 Dune::Hybrid::forEach(Dune::range(Hybrid::minus(id(n), _1) ), [&](auto i)
193 {
194 y *= x;
195 // Do y+= _next coefficient_, unless that coefficient is std::integral_constant<0>.
196 add(y,Hybrid::elementAt(coefficients_, Hybrid::minus(Hybrid::minus(id(n),_2), i)));
197 });
198 return y;
199 });
200 }
201
203 bool operator==(const Polynomial& other) const
204 {
205 if constexpr (IsIntegerSequence<Coefficients>::value)
206 return true;
207 else
208 return coefficients()==other.coefficients();
209 }
210
220 friend auto derivative(const Polynomial& p)
221 {
222 auto derivativeCoefficients = Impl::polynomialDerivativeCoefficients(p.coefficients());
223 using DerivativeCoefficients = decltype(derivativeCoefficients);
224 return Polynomial<K, DerivativeCoefficients>(std::move(derivativeCoefficients));
225 }
226
229 {
230 return coefficients_;
231 }
232
233private:
234 Coefficients coefficients_;
235};
236
237
238
239template<class K>
240Polynomial(std::vector<K>) -> Polynomial<K, std::vector<K>>;
241
242template<class K, std::size_t n>
243Polynomial(std::array<K,n>) -> Polynomial<K, std::array<K,n>>;
244
245template<class K, K... ci>
246Polynomial(std::integer_sequence<K, ci...>) -> Polynomial<K, std::integer_sequence<K,ci...>>;
247
248template<class K>
249Polynomial(std::initializer_list<K>) -> Polynomial<K, std::vector<K>>;
250
251
252
265template<class K, class Coefficients>
266auto makePolynomial(Coefficients coefficients)
267{
268 return Polynomial<K, Coefficients>(std::move(coefficients));
269}
270
280template<class K, class C>
281auto makePolynomial(std::initializer_list<C> coefficients)
282{
283 return Polynomial<K>(std::move(coefficients));
284}
285
286
287
288
289
290}} // namespace Dune::Functions
291
292
293
294#endif // DUNE_FUNCTIONS_ANALYTICFUNCTIONS_POLYNOMIAL_HH
A univariate polynomial implementation.
Definition: polynomial.hh:123
Polynomial()=default
Default constructor.
K operator()(const K &x) const
Evaluate polynomial using the Horner scheme.
Definition: polynomial.hh:176
C Coefficients
The type of the stored coefficient container.
Definition: polynomial.hh:154
const Coefficients & coefficients() const
Obtain reference to coefficient vector.
Definition: polynomial.hh:228
Polynomial(Coefficients coefficients)
Create from container of coefficients.
Definition: polynomial.hh:167
bool operator==(const Polynomial &other) const
Comparison of coefficients.
Definition: polynomial.hh:203
friend auto derivative(const Polynomial &p)
Obtain derivative of Polynomial function.
Definition: polynomial.hh:220
Definition: monomialset.hh:19
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden & Uni Heidelberg  |  generated with Hugo v0.111.3 (Oct 11, 22:33, 2025)