Dune Core Modules (2.7.1)

raviartthomas3cube2dlocalinterpolation.hh
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
4 #define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
5 
6 #include <vector>
7 
9 #include <dune/localfunctions/common/localinterpolation.hh>
10 
11 namespace Dune
12 {
13 
22  template<class LB>
24  {
25 
26  public:
27 
33  RT3Cube2DLocalInterpolation (unsigned int s = 0)
34  {
35  sign0 = sign1 = sign2 = sign3 = 1.0;
36  if (s & 1)
37  {
38  sign0 *= -1.0;
39  }
40  if (s & 2)
41  {
42  sign1 *= -1.0;
43  }
44  if (s & 4)
45  {
46  sign2 *= -1.0;
47  }
48  if (s & 8)
49  {
50  sign3 *= -1.0;
51  }
52 
53  n0[0] = -1.0;
54  n0[1] = 0.0;
55  n1[0] = 1.0;
56  n1[1] = 0.0;
57  n2[0] = 0.0;
58  n2[1] = -1.0;
59  n3[0] = 0.0;
60  n3[1] = 1.0;
61  }
62 
71  template<typename F, typename C>
72  void interpolate (const F& ff, std::vector<C>& out) const
73  {
74  // f gives v*outer normal at a point on the edge!
75  typedef typename LB::Traits::RangeFieldType Scalar;
76  typedef typename LB::Traits::DomainFieldType Vector;
77 
78  auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
79 
80  out.resize(40);
81  fill(out.begin(), out.end(), 0.0);
82 
83  const int qOrder = 9;
85 
86  for (typename QuadratureRule<Scalar,1>::const_iterator it=rule.begin(); it!=rule.end(); ++it)
87  {
88  Scalar qPos = it->position();
89  typename LB::Traits::DomainType localPos;
90 
91  localPos[0] = 0.0;
92  localPos[1] = qPos;
93  auto y = f(localPos);
94  out[0] += (y[0]*n0[0] + y[1]*n0[1])*it->weight()*sign0;
95  out[1] += (y[0]*n0[0] + y[1]*n0[1])*(2.0*qPos - 1.0)*it->weight();
96  out[2] += (y[0]*n0[0] + y[1]*n0[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign0;
97  out[3] += (y[0]*n0[0] + y[1]*n0[1])*(20.0*qPos*qPos*qPos - 30.0*qPos*qPos + 12.0*qPos - 1.0)*it->weight();
98 
99  localPos[0] = 1.0;
100  localPos[1] = qPos;
101  y = f(localPos);
102  out[4] += (y[0]*n1[0] + y[1]*n1[1])*it->weight()*sign1;
103  out[5] += (y[0]*n1[0] + y[1]*n1[1])*(1.0 - 2.0*qPos)*it->weight();
104  out[6] += (y[0]*n1[0] + y[1]*n1[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign1;
105  out[7] += (y[0]*n1[0] + y[1]*n1[1])*(-20.0*qPos*qPos*qPos + 30.0*qPos*qPos - 12.0*qPos + 1.0)*it->weight();
106 
107  localPos[0] = qPos;
108  localPos[1] = 0.0;
109  y = f(localPos);
110  out[8] += (y[0]*n2[0] + y[1]*n2[1])*it->weight()*sign2;
111  out[9] += (y[0]*n2[0] + y[1]*n2[1])*(1.0 - 2.0*qPos)*it->weight();
112  out[10] += (y[0]*n2[0] + y[1]*n2[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign2;
113  out[11] += (y[0]*n2[0] + y[1]*n2[1])*(-20.0*qPos*qPos*qPos + 30.0*qPos*qPos - 12.0*qPos + 1.0)*it->weight();
114 
115  localPos[0] = qPos;
116  localPos[1] = 1.0;
117  y = f(localPos);
118  out[12] += (y[0]*n3[0] + y[1]*n3[1])*it->weight()*sign3;
119  out[13] += (y[0]*n3[0] + y[1]*n3[1])*(2.0*qPos - 1.0)*it->weight();
120  out[14] += (y[0]*n3[0] + y[1]*n3[1])*(6.0*qPos*qPos - 6.0*qPos + 1.0)*it->weight()*sign3;
121  out[15] += (y[0]*n3[0] + y[1]*n3[1])*(20.0*qPos*qPos*qPos - 30.0*qPos*qPos + 12.0*qPos - 1.0)*it->weight();
122  }
123 
125 
126  for (typename QuadratureRule<Vector,2>::const_iterator it = rule2.begin();
127  it != rule2.end(); ++it)
128  {
129  FieldVector<double,2> qPos = it->position();
130 
131  auto y = f(qPos);
132  double l0_x=1.0;
133  double l1_x=2.0*qPos[0]-1.0;
134  double l2_x=6.0*qPos[0]*qPos[0]-6.0*qPos[0]+1.0;
135  double l3_x=20.0*qPos[0]*qPos[0]*qPos[0] - 30.0*qPos[0]*qPos[0] + 12.0*qPos[0] - 1.0;
136  double l0_y=1.0;
137  double l1_y=2.0*qPos[1]-1.0;
138  double l2_y=6.0*qPos[1]*qPos[1]-6.0*qPos[1]+1.0;
139  double l3_y=20.0*qPos[1]*qPos[1]*qPos[1] - 30.0*qPos[1]*qPos[1] + 12.0*qPos[1] - 1.0;
140 
141  out[16] += y[0]*l0_x*l0_y*it->weight();
142  out[17] += y[0]*l0_x*l1_y*it->weight();
143  out[18] += y[0]*l0_x*l2_y*it->weight();
144  out[19] += y[0]*l0_x*l3_y*it->weight();
145  out[20] += y[0]*l1_x*l0_y*it->weight();
146  out[21] += y[0]*l1_x*l1_y*it->weight();
147  out[22] += y[0]*l1_x*l2_y*it->weight();
148  out[23] += y[0]*l1_x*l3_y*it->weight();
149  out[24] += y[0]*l2_x*l0_y*it->weight();
150  out[25] += y[0]*l2_x*l1_y*it->weight();
151  out[26] += y[0]*l2_x*l2_y*it->weight();
152  out[27] += y[0]*l2_x*l3_y*it->weight();
153 
154  out[28] += y[1]*l0_x*l0_y*it->weight();
155  out[29] += y[1]*l0_x*l1_y*it->weight();
156  out[30] += y[1]*l0_x*l2_y*it->weight();
157  out[31] += y[1]*l1_x*l0_y*it->weight();
158  out[32] += y[1]*l1_x*l1_y*it->weight();
159  out[33] += y[1]*l1_x*l2_y*it->weight();
160  out[34] += y[1]*l2_x*l0_y*it->weight();
161  out[35] += y[1]*l2_x*l1_y*it->weight();
162  out[36] += y[1]*l2_x*l2_y*it->weight();
163  out[37] += y[1]*l3_x*l0_y*it->weight();
164  out[38] += y[1]*l3_x*l1_y*it->weight();
165  out[39] += y[1]*l3_x*l2_y*it->weight();
166  }
167  }
168 
169  private:
170  typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3;
171  typename LB::Traits::DomainType n0, n1, n2, n3;
172  };
173 }
174 
175 #endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS3_CUBE2D_LOCALINTERPOLATION_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:96
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:126
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:254
Second order Raviart-Thomas shape functions on the reference quadrilateral.
Definition: raviartthomas3cube2dlocalinterpolation.hh:24
RT3Cube2DLocalInterpolation(unsigned int s=0)
Make set number s, where 0 <= s < 16.
Definition: raviartthomas3cube2dlocalinterpolation.hh:33
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas3cube2dlocalinterpolation.hh:72
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:775
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:233
Dune namespace.
Definition: alignedallocator.hh:14
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (May 16, 22:29, 2024)