Dune Core Modules (2.7.1)

raviartthomas1cube3dlocalinterpolation.hh
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
4 #define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
5 
6 #include <vector>
7 
9 #include <dune/localfunctions/common/localinterpolation.hh>
10 
11 namespace Dune
12 {
21  template<class LB>
23  {
24 
25  public:
26 
32  RT1Cube3DLocalInterpolation (unsigned int s = 0)
33  {
34  sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
35  if (s & 1)
36  {
37  sign0 = -1.0;
38  }
39  if (s & 2)
40  {
41  sign1 = -1.0;
42  }
43  if (s & 4)
44  {
45  sign2 = -1.0;
46  }
47  if (s & 8)
48  {
49  sign3 = -1.0;
50  }
51  if (s & 16)
52  {
53  sign4 = -1.0;
54  }
55  if (s & 32)
56  {
57  sign5 = -1.0;
58  }
59 
60  n0[0] = -1.0;
61  n0[1] = 0.0;
62  n0[2] = 0.0;
63  n1[0] = 1.0;
64  n1[1] = 0.0;
65  n1[2] = 0.0;
66  n2[0] = 0.0;
67  n2[1] = -1.0;
68  n2[2] = 0.0;
69  n3[0] = 0.0;
70  n3[1] = 1.0;
71  n3[2] = 0.0;
72  n4[0] = 0.0;
73  n4[1] = 0.0;
74  n4[2] = -1.0;
75  n5[0] = 0.0;
76  n5[1] = 0.0;
77  n5[2] = 1.0;
78  }
79 
88  template<class F, class C>
89  void interpolate (const F& ff, std::vector<C>& out) const
90  {
91  // f gives v*outer normal at a point on the edge!
92  typedef typename LB::Traits::RangeFieldType Scalar;
93  typedef typename LB::Traits::DomainFieldType Vector;
94 
95  auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
96 
97  out.resize(36);
98  fill(out.begin(), out.end(), 0.0);
99 
100  const int qOrder = 3;
102 
103  for (typename QuadratureRule<Scalar,2>::const_iterator it = rule1.begin();
104  it != rule1.end(); ++it)
105  {
106  Dune::FieldVector<Scalar,2> qPos = it->position();
107  typename LB::Traits::DomainType localPos;
108 
109  localPos[0] = 0.0;
110  localPos[1] = qPos[0];
111  localPos[2] = qPos[1];
112  auto y = f(localPos);
113  out[0] += (y[0]*n0[0] + y[1]*n0[1] + y[2]*n0[2])*it->weight()*sign0;
114  out[6] += (y[0]*n0[0] + y[1]*n0[1] + y[2]*n0[2])*(2.0*qPos[0] - 1.0)*it->weight();
115  out[12] += (y[0]*n0[0] + y[1]*n0[1] + y[2]*n0[2])*(2.0*qPos[1] - 1.0)*it->weight();
116  out[18] += (y[0]*n0[0] + y[1]*n0[1] + y[2]*n0[2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*it->weight();
117 
118  localPos[0] = 1.0;
119  localPos[1] = qPos[0];
120  localPos[2] = qPos[1];
121  y = f(localPos);
122  out[1] += (y[0]*n1[0] + y[1]*n1[1] + y[2]*n1[2])*it->weight()*sign1;
123  out[7] += (y[0]*n1[0] + y[1]*n1[1] + y[2]*n1[2])*(1.0 - 2.0*qPos[0])*it->weight();
124  out[13] += (y[0]*n1[0] + y[1]*n1[1] + y[2]*n1[2])*(1.0 - 2.0*qPos[1])*it->weight();
125  out[19] += (y[0]*n1[0] + y[1]*n1[1] + y[2]*n1[2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*it->weight();
126 
127  localPos[0] = qPos[0];
128  localPos[1] = 0.0;
129  localPos[2] = qPos[1];
130  y = f(localPos);
131  out[2] += (y[0]*n2[0] + y[1]*n2[1] + y[2]*n2[2])*it->weight()*sign2;
132  out[8] += (y[0]*n2[0] + y[1]*n2[1] + y[2]*n2[2])*(1.0 - 2.0*qPos[0])*it->weight();
133  out[14] += (y[0]*n2[0] + y[1]*n2[1] + y[2]*n2[2])*(2.0*qPos[1] - 1.0)*it->weight();
134  out[20] += (y[0]*n2[0] + y[1]*n2[1] + y[2]*n2[2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*it->weight();
135 
136  localPos[0] = qPos[0];
137  localPos[1] = 1.0;
138  localPos[2] = qPos[1];
139  y = f(localPos);
140  out[3] += (y[0]*n3[0] + y[1]*n3[1] + y[2]*n3[2])*it->weight()*sign3;
141  out[9] += (y[0]*n3[0] + y[1]*n3[1] + y[2]*n3[2])*(2.0*qPos[0] - 1.0)*it->weight();
142  out[15] += (y[0]*n3[0] + y[1]*n3[1] + y[2]*n3[2])*(1.0 - 2.0*qPos[1])*it->weight();
143  out[21] += (y[0]*n3[0] + y[1]*n3[1] + y[2]*n3[2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*it->weight();
144 
145  localPos[0] = qPos[0];
146  localPos[1] = qPos[1];
147  localPos[2] = 0.0;
148  y = f(localPos);
149  out[4] += (y[0]*n4[0] + y[1]*n4[1] + y[2]*n4[2])*it->weight()*sign4;
150  out[10] += (y[0]*n4[0] + y[1]*n4[1] + y[2]*n4[2])*(1.0 - 2.0*qPos[0])*it->weight();
151  out[16] += (y[0]*n4[0] + y[1]*n4[1] + y[2]*n4[2])*(1.0 - 2.0*qPos[1])*it->weight();
152  out[22] += (y[0]*n4[0] + y[1]*n4[1] + y[2]*n4[2])*(1.0 - 2.0*qPos[0])*(2.0*qPos[1] - 1.0)*it->weight();
153 
154  localPos[0] = qPos[0];
155  localPos[1] = qPos[1];
156  localPos[2] = 1.0;
157  y = f(localPos);
158  out[5] += (y[0]*n5[0] + y[1]*n5[1] + y[2]*n5[2])*it->weight()*sign5;
159  out[11] += (y[0]*n5[0] + y[1]*n5[1] + y[2]*n5[2])*(2.0*qPos[0] - 1.0)*it->weight();
160  out[17] += (y[0]*n5[0] + y[1]*n5[1] + y[2]*n5[2])*(2.0*qPos[1] - 1.0)*it->weight();
161  out[23] += (y[0]*n5[0] + y[1]*n5[1] + y[2]*n5[2])*(2.0*qPos[0] - 1.0)*(2.0*qPos[1] - 1.0)*it->weight();
162  }
163 
165  for (typename QuadratureRule<Vector,3>::const_iterator it = rule2.begin();
166  it != rule2.end(); ++it)
167  {
168  FieldVector<double,3> qPos = it->position();
169 
170  auto y = f(qPos);
171  out[24] += y[0]*it->weight();
172  out[25] += y[1]*it->weight();
173  out[26] += y[2]*it->weight();
174  out[27] += y[0]*qPos[1]*it->weight();
175  out[28] += y[0]*qPos[2]*it->weight();
176  out[29] += y[1]*qPos[0]*it->weight();
177  out[30] += y[1]*qPos[2]*it->weight();
178  out[31] += y[2]*qPos[0]*it->weight();
179  out[32] += y[2]*qPos[1]*it->weight();
180  out[33] += y[0]*qPos[1]*qPos[2]*it->weight();
181  out[34] += y[1]*qPos[0]*qPos[2]*it->weight();
182  out[35] += y[2]*qPos[0]*qPos[1]*it->weight();
183  }
184  }
185 
186  private:
187  typename LB::Traits::RangeFieldType sign0, sign1, sign2, sign3, sign4, sign5;
188  typename LB::Traits::DomainType n0, n1, n2, n3, n4, n5;
189  };
190 }
191 #endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS1_CUBE3D_LOCALINTERPOLATION_HH
vector space out of a tensor product of fields.
Definition: fvector.hh:96
Abstract base class for quadrature rules.
Definition: quadraturerules.hh:126
static const QuadratureRule & rule(const GeometryType &t, int p, QuadratureType::Enum qt=QuadratureType::GaussLegendre)
select the appropriate QuadratureRule for GeometryType t and order p
Definition: quadraturerules.hh:254
First order Raviart-Thomas shape functions on the reference hexahedron.
Definition: raviartthomas1cube3dlocalinterpolation.hh:23
RT1Cube3DLocalInterpolation(unsigned int s=0)
Make set number s, where 0 <= s < 64.
Definition: raviartthomas1cube3dlocalinterpolation.hh:32
void interpolate(const F &ff, std::vector< C > &out) const
Interpolate a given function with shape functions.
Definition: raviartthomas1cube3dlocalinterpolation.hh:89
constexpr GeometryType cube(unsigned int dim)
Returns a GeometryType representing a hypercube of dimension dim.
Definition: type.hh:775
typename Overloads::ScalarType< std::decay_t< V > >::type Scalar
Element type of some SIMD type.
Definition: interface.hh:233
Dune namespace.
Definition: alignedallocator.hh:14
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (May 16, 22:29, 2024)