Dune Core Modules (2.7.0)

raviartthomas0cube3dall.hh
1// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2// vi: set et ts=4 sw=2 sts=2:
3#ifndef DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS0_CUBE3D_ALL_HH
4#define DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS0_CUBE3D_ALL_HH
5
6#include <cstddef>
7#include <numeric>
8#include <vector>
9
11
12#include <dune/localfunctions/common/localbasis.hh>
13#include <dune/localfunctions/common/localkey.hh>
14#include <dune/localfunctions/common/localinterpolation.hh>
15
16namespace Dune
17{
26 template<class D, class R>
28 {
29 public:
32
35 {
36 sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
37 }
38
40 RT0Cube3DLocalBasis (unsigned int s)
41 {
42 sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
43 if (s&1) sign0 = -1.0;
44 if (s&2) sign1 = -1.0;
45 if (s&4) sign2 = -1.0;
46 if (s&8) sign3 = -1.0;
47 if (s&16) sign4 = -1.0;
48 if (s&32) sign5 = -1.0;
49 }
50
52 unsigned int size () const
53 {
54 return 6;
55 }
56
58 inline void evaluateFunction (const typename Traits::DomainType& in,
59 std::vector<typename Traits::RangeType>& out) const
60 {
61 out.resize(6);
62 out[0][0] = sign0*(in[0]-1.0); out[0][1]=0.0; out[0][2]=0.0;
63 out[1][0] = sign1*(in[0]); out[1][1]=0.0; out[1][2]=0.0;
64 out[2][0] = 0.0; out[2][1]=sign2*(in[1]-1.0); out[2][2]=0.0;
65 out[3][0] = 0.0; out[3][1]=sign3*(in[1]); out[3][2]=0.0;
66 out[4][0] = 0.0; out[4][1]=0.0; out[4][2]=sign4*(in[2]-1.0);
67 out[5][0] = 0.0; out[5][1]=0.0; out[5][2]=sign5*(in[2]);
68 }
69
71 inline void
72 evaluateJacobian (const typename Traits::DomainType& in, // position
73 std::vector<typename Traits::JacobianType>& out) const // return value
74 {
75 out.resize(6);
76 out[0][0][0] = sign0; out[0][0][1] = 0; out[0][0][2] = 0;
77 out[0][1][0] = 0; out[0][1][1] = 0; out[0][1][2] = 0;
78 out[0][2][0] = 0; out[0][2][1] = 0; out[0][2][2] = 0;
79
80 out[1][0][0] = sign1; out[1][0][1] = 0; out[1][0][2] = 0;
81 out[1][1][0] = 0; out[1][1][1] = 0; out[1][1][2] = 0;
82 out[1][2][0] = 0; out[1][2][1] = 0; out[1][2][2] = 0;
83
84 out[2][0][0] = 0; out[2][0][1] = 0; out[2][0][2] = 0;
85 out[2][1][0] = 0; out[2][1][1] = sign2; out[2][1][2] = 0;
86 out[2][2][0] = 0; out[2][2][1] = 0; out[2][2][2] = 0;
87
88 out[3][0][0] = 0; out[3][0][1] = 0; out[3][0][2] = 0;
89 out[3][1][0] = 0; out[3][1][1] = sign3; out[3][1][2] = 0;
90 out[3][2][0] = 0; out[3][2][1] = 0; out[3][2][2] = 0;
91
92 out[4][0][0] = 0; out[4][0][1] = 0; out[4][0][2] = 0;
93 out[4][1][0] = 0; out[4][1][1] = 0; out[4][1][2] = 0;
94 out[4][2][0] = 0; out[4][2][1] = 0; out[4][2][2] = sign4;
95
96 out[5][0][0] = 0; out[5][0][1] = 0; out[5][0][2] = 0;
97 out[5][1][0] = 0; out[5][1][1] = 0; out[5][1][2] = 0;
98 out[5][2][0] = 0; out[5][2][1] = 0; out[5][2][2] = sign5;
99 }
100
102 void partial (const std::array<unsigned int, 3>& order,
103 const typename Traits::DomainType& in, // position
104 std::vector<typename Traits::RangeType>& out) const // return value
105 {
106 auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
107 if (totalOrder == 0) {
108 evaluateFunction(in, out);
109 } else if (totalOrder == 1) {
110 auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
111 out.resize(size());
112
113 for (std::size_t i = 0; i < size(); ++i)
114 out[i][0] = out[i][1] = out[i][2] = 0;
115
116 switch (direction) {
117 case 0:
118 out[0][0] = sign0;
119 out[1][0] = sign1;
120 break;
121 case 1:
122 out[2][1] = sign2;
123 out[3][1] = sign3;
124 break;
125 case 2:
126 out[4][2] = sign4;
127 out[5][2] = sign5;
128 break;
129 default:
130 DUNE_THROW(RangeError, "Component out of range.");
131 }
132 } else {
133 out.resize(size());
134 for (std::size_t i = 0; i < size(); ++i)
135 for (std::size_t j = 0; j < 2; ++j)
136 out[i][j] = 0;
137 }
138
139 }
140
142 unsigned int order () const
143 {
144 return 1;
145 }
146
147 private:
148 R sign0, sign1, sign2, sign3, sign4, sign5;
149 };
150
151
159 template<class LB>
161 {
162 public:
163
166 {
167 sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
168 }
169
172 {
173 sign0 = sign1 = sign2 = sign3 = sign4 = sign5 = 1.0;
174 if (s&1) sign0 *= -1.0;
175 if (s&2) sign1 *= -1.0;
176 if (s&4) sign2 *= -1.0;
177 if (s&8) sign3 *= -1.0;
178 if (s&16) sign4 *= -1.0;
179 if (s&32) sign5 *= -1.0;
180
181 m0[0] = 0.0; m0[1] = 0.5; m0[2] = 0.5;
182 m1[0] = 1.0; m1[1] = 0.5; m1[2] = 0.5;
183 m2[0] = 0.5; m2[1] = 0.0; m2[2] = 0.5;
184 m3[0] = 0.5; m3[1] = 1.0; m3[2] = 0.5;
185 m4[0] = 0.5; m4[1] = 0.5; m4[2] = 0.0;
186 m5[0] = 0.5; m5[1] = 0.5; m5[2] = 1.0;
187
188 n0[0] = -1.0; n0[1] = 0.0; n0[2] = 0.0;
189 n1[0] = 1.0; n1[1] = 0.0; n1[2] = 0.0;
190 n2[0] = 0.0; n2[1] = -1.0; n2[2] = 0.0;
191 n3[0] = 0.0; n3[1] = 1.0; n3[2] = 0.0;
192 n4[0] = 0.0; n4[1] = 0.0; n4[2] =-1.0;
193 n5[0] = 0.0; n5[1] = 0.0; n5[2] = 1.0;
194 }
195
196 template<typename F, typename C>
197 void interpolate (const F& ff, std::vector<C>& out) const
198 {
199 // f gives v*outer normal at a point on the edge!
200 auto&& f = Impl::makeFunctionWithCallOperator<typename LB::Traits::DomainType>(ff);
201
202 out.resize(6);
203
204 auto y = f(m0); out[0] = (y[0]*n0[0]+y[1]*n0[1]+y[2]*n0[2])*sign0;
205 y = f(m1); out[1] = (y[0]*n1[0]+y[1]*n1[1]+y[2]*n1[2])*sign1;
206 y = f(m2); out[2] = (y[0]*n2[0]+y[1]*n2[1]+y[2]*n2[2])*sign2;
207 y = f(m3); out[3] = (y[0]*n3[0]+y[1]*n3[1]+y[2]*n3[2])*sign3;
208 y = f(m4); out[4] = (y[0]*n4[0]+y[1]*n4[1]+y[2]*n4[2])*sign4;
209 y = f(m5); out[5] = (y[0]*n5[0]+y[1]*n5[1]+y[2]*n5[2])*sign5;
210 }
211
212 private:
213 typename LB::Traits::RangeFieldType sign0,sign1,sign2,sign3,sign4,sign5;
214 typename LB::Traits::DomainType m0,m1,m2,m3,m4,m5;
215 typename LB::Traits::DomainType n0,n1,n2,n3,n4,n5;
216 };
217
225 {
226 public:
229 {
230 for (std::size_t i=0; i<6; i++)
231 li[i] = LocalKey(i,1,0);
232 }
233
235 std::size_t size () const
236 {
237 return 6;
238 }
239
241 const LocalKey& localKey (std::size_t i) const
242 {
243 return li[i];
244 }
245
246 private:
247 std::vector<LocalKey> li;
248 };
249
250}
251#endif // DUNE_LOCALFUNCTIONS_RAVIARTTHOMAS0_CUBE3D_ALL_HH
A dense n x m matrix.
Definition: fmatrix.hh:69
vector space out of a tensor product of fields.
Definition: fvector.hh:96
Describe position of one degree of freedom.
Definition: localkey.hh:21
Lowest order Raviart-Thomas shape functions on the reference hexahedron.
Definition: raviartthomas0cube3dall.hh:28
unsigned int size() const
number of shape functions
Definition: raviartthomas0cube3dall.hh:52
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: raviartthomas0cube3dall.hh:72
unsigned int order() const
Polynomial order of the shape functions.
Definition: raviartthomas0cube3dall.hh:142
void partial(const std::array< unsigned int, 3 > &order, const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate partial derivatives of all shape functions.
Definition: raviartthomas0cube3dall.hh:102
RT0Cube3DLocalBasis(unsigned int s)
Make set numer s, where 0<=s<64.
Definition: raviartthomas0cube3dall.hh:40
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: raviartthomas0cube3dall.hh:58
RT0Cube3DLocalBasis()
Standard constructor.
Definition: raviartthomas0cube3dall.hh:34
Layout map for RT0 elements on quadrilaterals.
Definition: raviartthomas0cube3dall.hh:225
RT0Cube3DLocalCoefficients()
Standard constructor.
Definition: raviartthomas0cube3dall.hh:228
std::size_t size() const
number of coefficients
Definition: raviartthomas0cube3dall.hh:235
const LocalKey & localKey(std::size_t i) const
get i'th index
Definition: raviartthomas0cube3dall.hh:241
Lowest order Raviart-Thomas shape functions on the reference hexahedron.
Definition: raviartthomas0cube3dall.hh:161
RT0Cube3DLocalInterpolation(unsigned int s)
Make set numer s, where 0<=s<64.
Definition: raviartthomas0cube3dall.hh:171
RT0Cube3DLocalInterpolation()
Standard constructor.
Definition: raviartthomas0cube3dall.hh:165
Default exception class for range errors.
Definition: exceptions.hh:252
Implements a matrix constructed from a given type representing a field and compile-time given number ...
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
T accumulate(Range &&range, T value, F &&f)
Accumulate values.
Definition: hybridutilities.hh:290
Dune namespace.
Definition: alignedallocator.hh:14
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:32
D DomainType
domain type
Definition: localbasis.hh:43
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.111.3 (Oct 13, 22:30, 2024)