Dune Core Modules (2.5.2)

ldl.hh
Go to the documentation of this file.
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 #ifndef DUNE_ISTL_LDL_HH
4 #define DUNE_ISTL_LDL_HH
5 
6 #if HAVE_SUITESPARSE_LDL || defined DOXYGEN
7 
8 #include <iostream>
9 #include <type_traits>
10 
11 #ifdef __cplusplus
12 extern "C"
13 {
14 #include "ldl.h"
15 #include "amd.h"
16 }
17 #endif
18 
20 #include <dune/common/unused.hh>
21 
22 #include <dune/istl/colcompmatrix.hh>
23 #include <dune/istl/solvers.hh>
24 #include <dune/istl/solvertype.hh>
25 
26 namespace Dune {
38  // forward declarations
39  template<class M, class T, class TM, class TD, class TA>
40  class SeqOverlappingSchwarz;
41 
42  template<class T, bool tag>
43  struct SeqOverlappingSchwarzAssemblerHelper;
44 
51  template<class Matrix>
52  class LDL
53  {};
54 
68  template<typename T, typename A, int n, int m>
69  class LDL<BCRSMatrix<FieldMatrix<T,n,m>,A > >
70  : public InverseOperator<BlockVector<FieldVector<T,m>, typename A::template rebind<FieldVector<T,m> >::other>,
71  BlockVector<FieldVector<T,n>, typename A::template rebind<FieldVector<T,n> >::other> >
72  {
73  public:
82  typedef Dune::BlockVector<FieldVector<T,m>, typename A::template rebind<FieldVector<T,m> >::other> domain_type;
84  typedef Dune::BlockVector<FieldVector<T,n>, typename A::template rebind<FieldVector<T,n> >::other> range_type;
85 
95  LDL(const Matrix& matrix, int verbose=0) : matrixIsLoaded_(false), verbose_(verbose)
96  {
97  //check whether T is a supported type
98  static_assert(std::is_same<T,double>::value,"Unsupported Type in LDL (only double supported)");
99  setMatrix(matrix);
100  }
101 
111  LDL(const Matrix& matrix, int verbose, bool) : matrixIsLoaded_(false), verbose_(verbose)
112  {
113  //check whether T is a supported type
114  static_assert(std::is_same<T,double>::value,"Unsupported Type in LDL (only double supported)");
115  setMatrix(matrix);
116  }
117 
119  LDL() : matrixIsLoaded_(false), verbose_(0)
120  {}
121 
123  virtual ~LDL()
124  {
125  if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
126  free();
127  }
128 
131  {
132  const int dimMat(ldlMatrix_.N());
133  ldl_perm(dimMat, Y_, reinterpret_cast<double*>(&b[0]), P_);
134  ldl_lsolve(dimMat, Y_, Lp_, Li_, Lx_);
135  ldl_dsolve(dimMat, Y_, D_);
136  ldl_ltsolve(dimMat, Y_, Lp_, Li_, Lx_);
137  ldl_permt(dimMat, reinterpret_cast<double*>(&x[0]), Y_, P_);
138  // this is a direct solver
139  res.iterations = 1;
140  res.converged = true;
141  }
142 
144  virtual void apply(domain_type& x, range_type& b, double reduction, InverseOperatorResult& res)
145  {
146  DUNE_UNUSED_PARAMETER(reduction);
147  apply(x,b,res);
148  }
149 
155  void apply(T* x, T* b)
156  {
157  const int dimMat(ldlMatrix_.N());
158  ldl_perm(dimMat, Y_, b, P_);
159  ldl_lsolve(dimMat, Y_, Lp_, Li_, Lx_);
160  ldl_dsolve(dimMat, Y_, D_);
161  ldl_ltsolve(dimMat, Y_, Lp_, Li_, Lx_);
162  ldl_permt(dimMat, x, Y_, P_);
163  }
164 
165  void setOption(unsigned int option, double value)
166  {
167  DUNE_UNUSED_PARAMETER(option);
168  DUNE_UNUSED_PARAMETER(value);
169  }
170 
172  void setMatrix(const Matrix& matrix)
173  {
174  if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
175  free();
176  ldlMatrix_ = matrix;
177  decompose();
178  }
179 
180  template<class S>
181  void setSubMatrix(const Matrix& matrix, const S& rowIndexSet)
182  {
183  if ((ldlMatrix_.N() + ldlMatrix_.M() > 0) || matrixIsLoaded_)
184  free();
185  ldlMatrix_.setMatrix(matrix,rowIndexSet);
186  decompose();
187  }
188 
193  inline void setVerbosity(int v)
194  {
195  verbose_=v;
196  }
197 
203  {
204  return ldlMatrix_;
205  }
206 
211  void free()
212  {
213  delete [] D_;
214  delete [] Y_;
215  delete [] Lp_;
216  delete [] Lx_;
217  delete [] Li_;
218  delete [] P_;
219  delete [] Pinv_;
220  ldlMatrix_.free();
221  matrixIsLoaded_ = false;
222  }
223 
225  inline const char* name()
226  {
227  return "LDL";
228  }
229 
234  inline double* getD()
235  {
236  return D_;
237  }
238 
243  inline int* getLp()
244  {
245  return Lp_;
246  }
247 
252  inline int* getLi()
253  {
254  return Li_;
255  }
256 
261  inline double* getLx()
262  {
263  return Lx_;
264  }
265 
266  private:
267  template<class M,class X, class TM, class TD, class T1>
268  friend class SeqOverlappingSchwarz;
269 
270  friend struct SeqOverlappingSchwarzAssemblerHelper<LDL<Matrix>,true>;
271 
273  void decompose()
274  {
275  // allocate vectors
276  const int dimMat(ldlMatrix_.N());
277  D_ = new double [dimMat];
278  Y_ = new double [dimMat];
279  Lp_ = new int [dimMat + 1];
280  Parent_ = new int [dimMat];
281  Lnz_ = new int [dimMat];
282  Flag_ = new int [dimMat];
283  Pattern_ = new int [dimMat];
284  P_ = new int [dimMat];
285  Pinv_ = new int [dimMat];
286 
287  double Info [AMD_INFO];
288  if(amd_order (dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), P_, (double *) NULL, Info) < AMD_OK)
289  DUNE_THROW(InvalidStateException,"Error: AMD failed!");
290  if(verbose_ > 0)
291  amd_info (Info);
292  // compute the symbolic factorisation
293  ldl_symbolic(dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), Lp_, Parent_, Lnz_, Flag_, P_, Pinv_);
294  // initialise those entries of additionalVectors_ whose dimension is known only now
295  Lx_ = new double [Lp_[dimMat]];
296  Li_ = new int [Lp_[dimMat]];
297  // compute the numeric factorisation
298  const int rank(ldl_numeric(dimMat, ldlMatrix_.getColStart(), ldlMatrix_.getRowIndex(), ldlMatrix_.getValues(),
299  Lp_, Parent_, Lnz_, Li_, Lx_, D_, Y_, Pattern_, Flag_, P_, Pinv_));
300  // free temporary vectors
301  delete [] Flag_;
302  delete [] Pattern_;
303  delete [] Parent_;
304  delete [] Lnz_;
305 
306  if(rank!=dimMat)
307  DUNE_THROW(InvalidStateException,"Error: LDL factorisation failed!");
308  }
309 
310  LDLMatrix ldlMatrix_;
311  bool matrixIsLoaded_;
312  int verbose_;
313  int* Lp_;
314  int* Parent_;
315  int* Lnz_;
316  int* Flag_;
317  int* Pattern_;
318  int* P_;
319  int* Pinv_;
320  double* D_;
321  double* Y_;
322  double* Lx_;
323  int* Li_;
324  };
325 
326  template<typename T, typename A, int n, int m>
327  struct IsDirectSolver<LDL<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
328  {
329  enum {value = true};
330  };
331 
332  template<typename T, typename A, int n, int m>
333  struct StoresColumnCompressed<LDL<BCRSMatrix<FieldMatrix<T,n,m>,A> > >
334  {
335  enum {value = true};
336  };
337 
338 }
339 
340 #endif //HAVE_SUITESPARSE_LDL
341 #endif //DUNE_ISTL_LDL_HH
A sparse block matrix with compressed row storage.
Definition: bcrsmatrix.hh:423
A vector of blocks with memory management.
Definition: bvector.hh:313
A dense n x m matrix.
Definition: fmatrix.hh:68
Default exception if a function was called while the object is not in a valid state for that function...
Definition: exceptions.hh:279
Abstract base class for all solvers.
Definition: solver.hh:79
Use the LDL package to directly solve linear systems – empty default class.
Definition: ldl.hh:53
A generic dynamic dense matrix.
Definition: matrix.hh:555
Sequential overlapping Schwarz preconditioner.
Definition: overlappingschwarz.hh:742
A few common exception classes.
#define DUNE_THROW(E, m)
Definition: exceptions.hh:216
Dune::BlockVector< FieldVector< T, n >, typename A::template rebind< FieldVector< T, n > >::other > range_type
The type of the range of the solver.
Definition: ldl.hh:84
void setVerbosity(int v)
Sets the verbosity level for the solver.
Definition: ldl.hh:193
void apply(T *x, T *b)
Additional apply method with c-arrays in analogy to superlu.
Definition: ldl.hh:155
ColCompMatrixInitializer< BCRSMatrix< FieldMatrix< T, n, m >, A > > MatrixInitializer
Type of an associated initializer class.
Definition: ldl.hh:80
double * getLx()
Get factorization Lx.
Definition: ldl.hh:261
virtual void apply(domain_type &x, range_type &b, double reduction, InverseOperatorResult &res)
apply inverse operator, with given convergence criteria.
Definition: ldl.hh:144
virtual ~LDL()
Default constructor.
Definition: ldl.hh:123
Dune::BlockVector< FieldVector< T, m >, typename A::template rebind< FieldVector< T, m > >::other > domain_type
The type of the domain of the solver.
Definition: ldl.hh:82
void free()
Free allocated space.
Definition: ldl.hh:211
virtual void apply(domain_type &x, range_type &b, InverseOperatorResult &res)
Apply inverse operator,.
Definition: ldl.hh:130
void setMatrix(const Matrix &matrix)
Initialize data from given matrix.
Definition: ldl.hh:172
const char * name()
Get method name.
Definition: ldl.hh:225
int * getLi()
Get factorization Li.
Definition: ldl.hh:252
LDL(const Matrix &matrix, int verbose, bool)
Constructor for compatibility with SuperLU standard constructor.
Definition: ldl.hh:111
Dune::ColCompMatrix< Matrix > LDLMatrix
The corresponding SuperLU Matrix type.
Definition: ldl.hh:78
int * getLp()
Get factorization Lp.
Definition: ldl.hh:243
LDL()
Default constructor.
Definition: ldl.hh:119
double * getD()
Get factorization diagonal matrix D.
Definition: ldl.hh:234
LDLMatrix & getInternalMatrix()
Return the column compress matrix.
Definition: ldl.hh:202
LDL(const Matrix &matrix, int verbose=0)
Construct a solver object from a BCRSMatrix.
Definition: ldl.hh:95
Dune namespace.
Definition: alignment.hh:11
Implementations of the inverse operator interface.
Templates characterizing the type of a solver.
Inititializer for the ColCompMatrix as needed by OverlappingSchwarz.
Definition: colcompmatrix.hh:154
Statistics about the application of an inverse operator.
Definition: solver.hh:32
int iterations
Number of iterations.
Definition: solver.hh:50
bool converged
True if convergence criterion has been met.
Definition: solver.hh:56
Definition of the DUNE_UNUSED macro for the case that config.h is not available.
#define DUNE_UNUSED_PARAMETER(parm)
A macro to mark intentionally unused function parameters with.
Definition: unused.hh:18
Creative Commons License   |  Legal Statements / Impressum  |  Hosted by TU Dresden  |  generated with Hugo v0.80.0 (May 10, 22:30, 2024)