A General Object Oriented Framework for
Discretizing Nonlinear Evolution Equations

ADRIAN BURRI
Albert- Ludwigs- Universitit, Freiburg, Germany
e-mail: burriad@mathematik.uni-freiburg.de

ANDREAS DEDNER
Albert- Ludwigs- Universitit, Freiburg, Germany
e-mail: dedner@mathematik.uni-freiburg.de

DENNIS DIEHL
Albert- Ludwigs- Universitdt, Freiburg, Germany
e-mail: dennis@mathematik.uni-freiburg.de

ROBERT KLOFKORN!
Albert- Ludwigs- Universitdt, Freiburg, Germany
e-mail: robertk@mathematik.uni-freiburg.de

MARIO OHLBERGER?
Albert- Ludungs- Universitit, Freiburg, Germany
e-mail: mario@mathematik.uni-freiburg.de

For a large class of non linear evolution problems we derive an abstract formulation
that is based on writing the original model as a system of first order partial differential
equations. Starting from this reformulation, a set of interface classes are derived that
allow a problem independent implementation of various temporal and spacial discretization
schemes. In particular, the abstract framework is very well suited for discretizing evolution
equations with the Local Discontinuous Galerkin ansatz [1]. The implementation of the
proposed framework is done within the Distributed and Unified Numerics Environment
DUNE |2, 3].

Introduction

In [2, 3] a generic grid interface for serial and parallel computations is introduced that is re-
alized within the Distributed and Unified Numerics Environment DUNE. One of the major
goals of such an interface based numerics environment is the separation of data structures and
algorithms. For instance, the problem implementation can be done on the basis of the interface
independent of the data structure that is used for a specific application. Moreover, such a con-
cept allows a reuse of existing codes beyond the interface. This grid interface is a central part

!Supported by the Bundesministerium fiir Bildung und Forschung under contract 03KRNCFR.
2Supported by the Landesstiftung Baden-Wiirttemberg under contract 21-665.23/8.

2 A. Burri, A. Dedner, D. Diehl, R. Kléfkorn, M. Ohlberger

of a number of projects with industrial and physical applications at the Institute for Applied
Mathematics in Freiburg. Although a wide range of applications has to be covered, a common
ground for the underlying mathematical models can be found. This observation suggests to de-
fine also a common interface for the numerical schemes and to provide a generic implementation
for the central parts of the schemes. Notwithstanding the diversity of the mathematical models
a discretisation using the Local Discontinuous Galerkin ansatz 1] seems very promising. In this
paper we describe the strategy for a general implementation of the scheme.

In the next section we outline the Discontinuous Galerkin ansatz for discretizing first order
evolution equations and its extension to more complicated evolution equations. To simplify
the abstract description the discretization is demonstrated in the case of a simple example.
In Section 2 the projects from the Institute of Applied Mathematics in Freiburg which are
using the DUNE code are presented, focusing on the mathematical models and their formal
reformulation so that the local Discontinuous Galerkin ansatz is applicable. Section 3 is devoted
to the description of the implementational details of the discretization in the DUNE context.
We conclude with some results in Section 4.

1. The Discontinuous Galerkin Discretization

1.1. First Order Evolution Equations

We begin our discussion with a study of first order systems of the form: 0,U(t, -) = L[U(t, -)](-)
where the spatial operator is defined by

L[V] =S(V) =V -F(V) - A(V)VV (1)

where V : R? — RP is in some suitable function space V. We focus here on the space discretiza-
tion, i.e., we construct a discrete operator £, which maps one finite-dimensional function space
V,, onto another finite-dimensional function space W). This operator is constructed by multi-
plying equation (1) with a test functions ¢ and by integrating over the domain C R? which is
partitioned into a finite number of cells (A;);—; . n. We assume that V, ¢ are smooth functions
on the cells A; but may be discontinuous over the cell interfaces. Next, we formally integrate

by parts the divergence term over the cells A; and we interpret the nonconservative product
©A(V)VV as a measure (0A(V)VV)s as defined in [4]. Thus we arrive at

/Q,C[V]godx = Z/A_S(V)goder
zj:/Aj F(V) - Vpdx — zj:/aAj ¢F(V) - ndo +
> /A PA(V)VVix+ Y /8 Apl\(\/f)[V]nda 2)

—~—

where [V]n denotes the jump of V in direction of the normal at cell interfaces. ¢ A(V)[V]n
is the value of the measure (pA(V)VV)s at a point of discontinuity and the averaged value

©A(V) depends on the path ®. The tilde denotes averaging between the cell interfaces, i.e.
numerical fluxes for the conservative part. The discrete function Wy, := L£,[V}] is defined so
that [, Wy¢;, equals the right hand side of (2) for all test functions ¢, € W,

A Framework for Discretizing Evolution Equations 3

The construction of £, depends on the averaged values used in (2), which are problem

dependent. For the conservative flux average F(V) one can either use a generic flux like the
Lax-Friedrichs flux function or for example some more sophisticated Riemann solver based flux
function [5]. In the simplest case the approximation of the measure consists of the average
between the values of ¢, A(V) from both sides of the interface of 0A;.

1.2. General Systems of Evolution Equations

For the discretization in the case where the spatial operator £ has a more complex form,
involving for example higher order derivatives of V or non-linearities in the non-conservative
product, we employ a decomposition of L. Let us assume that we have spatial operators L
for s = 1,...,5 mapping V, 1 to V, := W, x V,_; where Vj = V and Wg = V such that
L =TlgoLgo---oL; using the projection operator IIg(Vs,..., Vi, V) := Vg. If each of the
operators L, is a first order operator of the form discussed above then we can construct discrete
operators Ly, ; as before and combine these operators to define £, =Ilgo Ly go---0 Ly ;.

Let us demonstrate this approach in the case of a simple scalar advection diffusion equation
in 1d:

Llu] = =0 (f(u) — K(u)0,(k(u))) — A(u)Dsa(u) . (3)

This equation differs in two aspects from (1); it contains a second order derivative term and
the non-conservative product is non-linear in the derivative term - this leads to problems in
defining the measure on the boundary [4]. We therefore formally rewrite this equation in the
following form using auxiliary functions wy, = (wy 1, ws 2):

w171 = 896]{3(’&) s
wie = a(u),
wy = —0u(f(u) — K(u)wy 1) — A(u)0ywy o .

Defining the operators £;[u] = (wq,u) and Lo|wy, u] = (wsy, wy, u) we arrive at a decomposition
of L consisting of operators of the desired form.

In some cases closure relations given for example by elliptic operators have to be taken into
account. Examples are two-phase flow models and radiation hydrodynamics. In these cases we
have additional terms of the form Q(A~!(U)); here @ is a non-linearity and A some general
operator. These terms can not be directly handled in the form described so far but require the
construction of problem dependent discrete operators .A,;l. If these are available they can be
directly included in the generic framework described above. In this way the approach can be
applied to construct discrete operators for quite complicated systems of evolution equation as
we will demonstrate in Section 2.

1.3. Time Discretization

So far we have a semi-implicit discretization of the evolution equation 9,U(¢,-) = L[U(¢,-)](-)
which leads to a system of ODEs 4U,(t) = L£,[U(t)] for the coefficients defining Uy(t).
To solve this system of ODEs a suitable solver, i.e., a Runge-Kutta method can be applied.
Depending on the stability restrictions imposed by the spatial operator one can use either an
explicit or an implicit method. To overcome time-step restrictions for explicit schemes while

4 A. Burri, A. Dedner, D. Diehl, R. Kléfkorn, M. Ohlberger

at the same time retaining the time accuracy of explicit methods for non-restrictive terms a
suitable combination of explicit/implicit solvers is sometimes the best approach. To achieve
this one has to rewrite the evolution equations using two operators

d

29) = Leq[U(E)I0) + Linp[U(E)]() (4)
where Limpm[U(%,-)](-) combines all the stability restricting terms. The corresponding discrete
operators are constructed in the same manner as outlined so far and for the time-discretization
a semi-implicit Runge-Kutta method is used — an explicit approach for L.y, and an implicit
for Eimpl,h-

Again we conclude our discussion with a simple example. Consider the evolution equation
where the spatial operator is given by (3). The first order terms lead to a time-step restriction
in the order of the grid size h whereas the diffusion term introduces a stability restriction of
the order h%. Therefore an appropriate splitting is given by

Lospilu] = —0:f(u) = A(u)dra(u) , (5)
Limpilu] = 0x(K(u)0pk(u)) . (6)

We use a similar decomposition as before, defining Loy 1[u] = (w1, u), Lexpr2[wi, u] = (wa, wy, u)
and Eimp1,1[u] = (w17u>7 Eimpl,2[w17u] = (1172771717 U) by

wr = afu),
wy = —0.f(u) — A(u)d,wr ,

Wy = Ou(K (u)in) .

This leads to

d
%U(tv) =1, [‘CeXpM [‘CeXpl,l[U(ta)H]() + 11, [‘Cimpl,Z[‘Cimpl,l[U(tv)H]() :
The simplest time-discretization is given by the forward /backward Euler method. With a time-

step At this leads to

Ut) —u,)

At 1T [CeXplﬂ[LeXle[U(tnv)H]() + H2[£impl,2[£impl,1[U(tm_la)H]() :

We conclude that the essential steps for the discretization discussed here are the following
1. rewrite the spatial operator as a sum of two operators ,Cexpl, Eimpl.
2. decompose both spatial operators into first order operators of the form 1.
3. use the Discontinuous Galerkin approach to construct discrete operators.
4. use an explicit/implicit Runge-Kutta ODE solver to advance the solution in time.

Note that steps one and two are problem dependent whereas the following discretization steps
three and four can be implemented generically if suitable numerical fluxes are available.

A Framework for Discretizing Evolution Equations)

2. Participating Projects

2.1. Torrential Floods

The flow of water-sediment mixtures are often modeled starting from the incompressible two
phase 3d Navier-Stokes equations for a non Newtonian fluid with free boundary. To reduce the
complexity of the model a shallow flow approach is used which leads to a 2d model where the
free boundary is implicitly defined by solving an equation for the depth of the flow h.

The main difficulty involves the derivation of suitable models for the internal and bed
friction. Even very simple versions include very complicated terms involving both second order
derivatives and non-conservative products. To demonstrate the general ideas for using the
approach described previously we only present some part of the model derived in [6]:

oU+V-FU)-S,(U)-S,(U,VU,V?U) = 0. (7)

The balanced quantities are the depth of the flow & and the momentum hu. S, is the driving
force to gravity, and S, is a sum consisting of terms modeling the different relevant stresses.
We only include two terms in the following

U = (hhu)",
1
F = (hu,huu’ + 5gthI)T :
S, = (0,9.Vbh) ,
S, = (0,—phdu; + sin(pin)g.sign(yu)hd,h +...,...) .

Here g, is the magnitude of gravitational acceleration, b describes the bed topology, and ¢y, it
are constants modeling the internal friction of the granular material.

With a simple transformation we can rewrite equation (7) as a system of first order equations
for U and a set of additional quantities V:

V1 — V’U/m =0 5 (8)
U+ V- F(U) — Sg(U) - SQ(U,V1) =0 (9)
where the new source term is given as
SQ(U, Vl) = (O, —,Lthax‘/l,l + g Siﬂ((bint)sign(vm)h@yh + ... yooe) .

Note the non-conservative terms in S, which are linear in the derivative as required for the
discretization approach described above.

2.2. Two-Phase Flow in Porous Media

In this subsection we consider two-phase multicomponent flow in porous media. Applications
in mind are the simulation of water and oil flow through the soil (e.g. biodegradation) or the
the simulation of water and gas flow in fuel cells (see for example [7, 8, 9]).

Here, we focus on a simplified system for incompressible two-phase flow including multi-
component transport which is the basis for the application in mind. The model considers gas
and water flow in a porous medium where in the gas phase also the species hydrogen, oxygen,

6 A. Burri, A. Dedner, D. Diehl, R. Kléfkorn, M. Ohlberger

water, and some rest gas (mainly consisting of nitrogen) have to be modelled. The governing
equations are given as follows. From mass and momentum balance for the water phase (i = w)
and the gas phase (i = g) we get

(o) + V- (w) = qi(s:), (10)
u; = _>\i(5i>KvPi7

with the following closure relations

Sw + Sqg = 17 (11)
Pw = Dg— De(Sw) =Dy — pe(l — 5,). (12)

Within this model the unknown variables are the saturations of the phases s;, the pressures of
the phases p;, and the phase velocities u;. ¢ denotes the porosity of the medium and p.(s.,,)
is the capillary pressure, given as a function of the water saturation. A parameterization for
this function is for example given by the model of Van Genuchten (see [8]). A;(s;) denotes the
relative mobility of the ith phase, depending on the saturation of the phases, respectively. In
addition K denotes the absolute permeability of the medium and ¢; represents sources and
sinks. For instance the phase transition between the water and gas phase is modelled through
;-

As independent variables for our computations we choose the saturation of the gas phase
s, and the pressure of the gas phase p,. Thereby we assume, that the physics are such that we
always have s, > 0. Summing up the equations in (10) and using the relation (11) we get for
the so called global velocity u = u, + u,, and the global source term ¢(s) = g,(s) + g (1 —)

V-u=q(sg). (13)

The equation for p, is determined by using relation (12) to replace p,, by p, — p.(1 — s,) and
inserting the definitions of u, u; into equation (13). Thus, we get with the elliptic operator
A(pg) == =V - (A1 = 59) + Ag(59)) KVpy):

Alpg) = q(sg) = V- (Au(1l — 8 KVpe(1 = sy)). (14)

For each species in the gaseous phase we have to consider a transport equation. For ¢ :=
(cf2 02 20 cBYT we have

O (psyc) + V- (uge) — V- (¢ps,D,Ve) =ry(sy, 54€). (15)

The equation for the species R can be dropped by using the relation ¢/ + 92 4- cH20 4 R = 1.
Therefore the vector of the concentrations reduces to ¢ := (c#2, %2, cH#29)T, In this model
D, denotes the dispersion tensor describing the macroscopic diffusion of the species. r, is a
source/sink term which for example represents reactions of the species.

Next, we rewrite the above described model as a system of first order equations in order to
apply the LDG method. Doing so, we end up with the following set of equations. The vector
of unknowns is U := (¢s,, (ngC)T and V1, V, are vectors of temporary needed values.

Vii+KVp.(l-Ui/¢) = 0,
Vi, —V(Uy/Uy) = 0,

V, + KV{A ! (B(V11,U1/9))} = 0, (17)
U+ V- (F(U,V{,V,))-S(U) = 0. (18)

A Framework for Discretizing Evolution Equations 7

The first pass is formed by equations (16), the second by equations (17); here, p, is implicitly
defined by the p, = A~ (B(V11,V11)) where B(x,y) = q(y) — V - (Ay(1 — y)x) is the right
hand side. The last pass consists of equation (18) with the flux function F

B A (Ur/$)V
F(U, Vi, Vs) = (\(U1/6)VaUs Uy — UD,V)

end the source/sink terms S

o= (443

2.3. Reactive Navier-Stokes Equations

For the simulation of reactive flows in gas turbine combustors, the reactive Navier-Stokes equa-
tions as defined in [10] are used. The mass and momentum conservation part of the compressible
Navier-Stokes equations can be written as

dp
85;;1 +V-(puu® +pI—7) = 0. (20)

In the momentum equation (20), 7 denotes the stress tensor which for Newtonian fluids has
the form

T=p <Du + (Du)? - %(v : u)I) (21)

where p denotes the viscosity of the fluid and I the unity tensor.
In order to get to the reactive Navier-Stokes equations, partial differential equation for the
chemical species are added:

ot

+V- (pwiu) +V Jz =m, 1 € {17 nspecies} (22)

where j, is a flux resulting from species diffusion. The source term 7, originates from species
conversions due to chemical reactions. The species diffusion is modeled using Fick’s law j;, =
—pD;Vw,; — pZ?ipf”“ D;Vw; where D; is a diffusion constant which can be chosen indepen-
dently for each species <.

Due to the consideration of diffusion of species with differing enthalpy of formation AH;,

the standard energy equation must be supplemented with an additional term, leading to

Nspecies

Ope . .
S v (u(pe +p)) = =V -(pr+ru+ Z AH,j,). (23)
ot —
In this equation j; is the temperature diffusion flux and is given by Fourier’s law as j, = —AVT

where \ is the heat conduction coefficient and 7" the temperature.
In order to close the system of equations discussed here, an additional expression relating
the thermodynamic variables is needed. Here, the ideal gas law p = pRT is used, where the

8 A. Burri, A. Dedner, D. Diehl, R. Kléfkorn, M. Ohlberger

ideal gas constant of the mixture is expressed as R = R* Z?i”f“” ;”V—JJ with R* := 8.136J/mol
being the universal gas constant.
If the specific heat capacity ¢, is assumed to be independent of the temperature 7', the

specific total energy pe is given as

1 1 Nspecies
pe = ﬁp + iqu + Z AH;pw; (24)
=1

where the definition v := ¢,/c, and the identity R = ¢, — ¢, is used, as well as the equation
of state. Overall we arrive at a set of equations for the partial differential quantities in U =
(p, pu, pe, pw)T closed using (24) to define the pressure p = p(U) and the relation T' = L
With a simple transformation we finally arrive at a system of first order equations

VvV — ,LL(DLI + (Du)” — %(V : u)I) = 0,

pR
V,+AV——= = 0, (25)
2ns ec p(U>
V3+pDvW+pZ,_j‘Dini = 0,
QU+ V- -Fo(U,V,,Vy, V;) = Sy(U) (26)

where the new flux vector Fy and source term S, are given as

Fy(U, V1, Vy, V) = <PU7PUUT+Z?(U)I+V1,

T
(p6+p<U))u+V2 + Viu+ Z AHZ‘V3i,pWUT~|>V3> ,

i=1

S,(U) = (0,0,0, r‘n(U)>T.

2.4. Liquid-Vapour Flows with Phase-Change

We consider the dynamics of a compressible liquid-vapour flow undergoing phase transitions
which is governed by the compressible Navier-Stokes-Korteweg system [11]. This is an extension
of the Navier-Stokes system with an additional third order term that takes the effect of surface
tension at phase boundaries into account.

Op + V- (pu) = 0, (27)
d(pu) + V-(puu®)+Vp(p) = V-7+IMpVAp

where the unknowns are the density p(x,t) > 0 and the velocity u(x,t), 7 is the usual Navier-
Stokes tensor as in the section before, the capillarity A > 0 is a known constant and the function
p = p(p) is given by a van-der-Waals equation of state where the temperature is fixed to a con-
stant below the critical temperature to allow for phase transitions. Note that there is no order
parameter in this model that indicates the phases. In this model the phases are determined by
the value of the density only (low density=vapour, high density=liquid).

The system can also be written in conservative form but it turned out to be better (see [12] and
references therein) to discretize the third order term together with the Vp(p) term in noncon-
servative form in order to get accurate results when nontrivial local equilibrium configurations

A Framework for Discretizing Evolution Equations 9

are present.
dp + V- (pu)

0
’ 28
d(pu) + V-(puu”)+pVk = V.7 (28)

where k is defined by the relation
. /
_ ._ _ [P

k= K(p, Ap) := —AAp+plp), plp) = | ——ds. (29)

0

The advantage of the nonconservative form is that the variable x appears explicitly in the
equation. k is equal to some constant at a static equilibrium state (i.e. a state with 9,p = 0
and u = 0). So the discretization of the nonconservative reformulation of the equation leads
naturally to a well-balanced scheme.

V,-Vp = 0,
Vy—Vu = 0, (30)
k—p(p) +AV -V, =0, (31)

O(pu) + V-(puul)+pVk -V -7(V,) = 0.

3. Implementation of the Discrete Evolution Operator

This section deals with the realization of the mathematical model from section 1 in DUNE.
Subsection 3.1 describes fundamental concepts of DUNE relevant for the LDG ansatz whereas
subsections 3.2 and 3.3 explain the newly introduced discretization concepts and their imple-
mentation.

3.1. Discrete Functions and Operators

The implementation of a discrete model of a partial differential equation is based on the fol-
lowing general concept of function spaces, functions and operators, that act on functions.

3.1.1. Abstract definition of function spaces and functions

A function space V' in our concept is a set of mappings from the domain D := K%, to the range
R :=K}%, e.g.

Vi={u:K$ — K}

Here, Kp denotes the domian field, Kg the range field and d,n the dimensions of the domain
and range, respectively. To further specify the function space, additional properties can be
added, e.g. the function are in C" or do belong to the Sobolev Space H™.

A discrete function space V}, with finite dimension m is a subset of a function space with the
property that the functions are defined locally on the elements e of the underlying computational
grid 7. If é denotes the reference element of e and F, the mapping F, : € — e, we define the
local base function set V; on the reference element é through

Ve = {QOl, * (pdim(Vé)}'

10 A. Burri, A. Dedner, D. Diehl, R. Kléfkorn, M. Ohlberger

The discrete function space V}, is then given as

= {uh cV: uh‘e = U = Z g(u&@) @ o Feil, for all e € T}

PEV:

We call V, := span{p o Fe_1 : ¢ € Vi} a local function space, u, € V. a local function,
and DOF, := {u.,, ¢ € V;} the set of local degrees of freedom. In oder to incorporate global
properties of the discrete function space, the function space has to provide a mapping g between
the local degrees of freedom (DOF,.) and the global degrees of freedom DOF := {u; : i =
0, ,m}.

We summarize, that a discrete function space V} is determined by a function space V', a
grid 7, the base function sets V; for all reference elements é and the mapping g from local to
global degrees of freedom. A discrete function w, € V}, is accordingly defined as a set of local
functions u, where a local function provides access to the local degrees of freedom (DOF.).

3.1.2. Abstract definition of operators acting on discrete function

A discrete operator L, is a mapping that acts on discrete functions, e.g.
Lh : Vh — Wh-

Thereby, we suppose that a discrete operator may always be decomposed into a global Operator
L., a set of local operators L., and a global operator L,,s, i.e.

Lye + Vy—{V,,eeT},
L, : V,— W, foralleeT,
Lpost . {We7 e c T} — Wh,

L, = Lpost © diag{Lea ES T} © Lpre-

Here diag{L.,e € T} is a diagonal matrix composed by the entries L.. Note that with this
definition of a discrete operator we are able to combine operators L} and L? in a local way,
provided that L2 o L! ., = 1Id, i.e.

pre post

2oL} = I?

post

odiag{L?o Ll,e€ T}o L}

pre*

3.1.3. Interface classes for discrete functions and operators

According to the abstract description of discrete functions and operators above, we define the
following interface classes:

1. FunctionSpace(DomainField, RangeField, DomainDim, RangeDim)
This class corresponds to the function space V. It is parameterized by the domain field
Kp =DomainField, the range field Kp =RangeField, as well as the dimensions of the
domain d =DomainDim and range n =RangeDim.

2. Function(FunctionSpace)
A Function is parameterized by the type of the function space FunctionSpace it belongs
to. To evaluate a function, the following method is provided:

A Framework for Discretizing Evolution Equations 11

(a) evaluate(x,ret): Evaluates the function at point x and returns the value ret.

3. DiscreteFunctionSpace(FunctionSpace , Grid, BaseFunctionSet)
This class corresponds to the discrete function space V},. It is parameterized by the type of
the function space V' =FunctionSpace such that V}, C V, the type of the computational
grid 7 = Grid and the type of the base function set V; = BaseFunctionSet. The class
provides an iterator for the access of the entities e of the grid. In addition the following
methods are provided:

(a) mapToGlobal(e, nLocal): Returns the global number of the degree of freedom with
local number nLocal on the entity e. Thus, it corresponds to the mapping g in our
abstract definition.

(b) getBaseFunctionSet(e): Returns base function set V; of entity e.

4. DiscreteFunction(DiscreteFunctionSpace, LocalFunction)
A discrete function is parameterized with the type of the discrete function space V, =
DiscreteFunctionSpace it belongs to. In addition it is also parameterized with the type
of its local functions u, LocalFunction on the entities e. To access the local functions,
the following method is provided:

(a) localFunction(e, 1f): Returns the local function 1f of entity e.

5. DiscreteOperator<Loca10perator,DFDomain,DFRange)
A discrete operator L, is parameterized by the type of the functions in its domain
(DFDomain) and the type of the functions in its range (DFRange). In addition the type of
the local Operators L. is given. To apply the discrete operator, the ()-operator is defined
as follows:

(a) (arg, dest): Applies the operator to arg of type DFDomain and returns the resulting
discrete function dest of type DFRange.

3.2. Combining Discrete Operators — Abstract Interface Classes

In the following, the classes for combining discrete operators in the form required for the Local
Discontinuous Galerkin (LDG) ansatz described in the previous sections are presented.
The new classes in DUNE are:

1. Pass(ProblemType, PreviousPass)
As described in section 1, the operator £ is decomposed into passes L£; as L[U] =
Li[Lr 1] - L2[L1[U]]---]]- This class serves as the base class for specialized versions
of a sub operator L;. It controls the execution of the previous passes and assembles the
data, i. e. it combines the solution of the previous passes (V;_1, ..., V1) with the data U.
The actual computation of a pass is implemented in a subclass, which needs to override
the method compute to this end. The class takes two template parameters:

a) ProblemType User-defined class which provides the problem dependent types.
yp

(b) PreviousPass Type of the previous pass implementing £; ;.
PreviousPass is either a subtype of Pass or — in case the actual pass is the first
pass — of type StartPass(ArgumentImp).
StartPass(ArgumentImp) serves as an end marker to the list of passes.

12 A. Burri, A. Dedner, D. Diehl, R. Kléfkorn, M. Ohlberger

At run time, the structure of the passes resembles a linked list. Due to the template based
implementation, the structure of this linked list can be evaluated at compile-time, so that
every pass knows the exact type of its preceding passes and has access to the types defined
by them.

2. PassImpl(ProblemType, PreviousPass)

PassImpl stands for a set of generic classes which implement the evaluation of the operator
L; of pass i with the data obtained from the previous pass. Predefined classes exist for
common cases which result from the transformation of the overall problem into a first
order system. For instance, specific implementations to evaluate equations of the form
(2) with a flux function F and a source term S and for solving general elliptic problems
are available in DUNE. If the problem at hand does not fit into one of these categories,
the user can define her own classes by deriving from Pass and overriding the method
Pass(...): :compute.

3. ProblemImpl
ProblemImpl stands for a set of user-defined classes which describe the actual problem. In
most cases, the class consists of problem-specific type definitions and an implementation
for the functions S, F and A in equation (1). Hence, the effort to adapt the Discontinuous
Galerkin Operator in DUNE is reduced to write a simple problem definition class for
each pass while the more intricate details are shielded from the user in the predefined
classes.

3.3. Combining Discrete Operators — Example Implementation

To illustrate how the classes described in section 3.2 are used, a simplified implementation
is shown here. The code example implements a simplified version of the problem (1) defined
in section 1, using a finite difference discretisation for simplicity. The simplified form of the
equation reads

U (x,t) = =0, - (aU(x,t) + €0, U(x,1)). (33)

The core of the implementation is the class Pass. In the simplest form, an operator would
contain a list of Pass pointers, sequentially evaluate them with the data and the results from
the previous Passes and return the result from the last one. The solution implemented here is
close to this form, with two differences:

1. There is no enclosing operator class, but the last pass serves as the operator itself. Con-
sequently, the assembly of the correct input data to each Pass and the adherence to the
right calling order is managed by the Pass class itself.

2. The list of Passes is implemented as a linked list evaluable at compile-time so that type
information can be carried over from previous Passes. This is necessary since the type of
the discrete functions of the data and of the results varies from Pass to Pass.

As an additional responsibility, the Pass class needs to provide storage for intermediate results
which are only used within the passes. The following listing shows a simplified implementation
of this core class.

A Framework for Discretizing Evolution Equations 13

// The Pass base class
template <class Problem, class FunctionSpace, class PreviousPass>
class Pass {
public:
enum { passnr=PreviousPass::passnr+1};
typedef FunctionSpace DestinationType;
// Types from previous pass
typedef typename PreviousPass:: GlobalArgumentType GlobalArgumentType;
typedef typename PreviousPass:: NextArgumentType LocalArgumentType;
// Types for internal usage or next pass
typedef Pair<const GlobalArgumentType*, LocalArgumentType>
TotalArgumentType;
typedef Pair<DestinationType x, LocalArgumentType > NextArgumentType;
public:
// The pass i is initialized with its precessor pass i-1. Every pass triggers
// the allocation of temporary memory on its precessor. In doing this it is
// guaranteed that the last pass allocates no temporary memory for the result
// (which is passed to it by the client)
Pass(PreviousPass& pass) :
previousPass (pass), dest (0) {
pass.initialize ()
}
virtual ~“Pass() {
delete dest_;
dest = 0;

// The application operator is called directly by the client. This way,
// the last pass serves as the operator in the Dune sense and the memory
// for the result (the argument dest) is passed to it directly.
void operator() (const GlobalArgumentType& arg, DestinationType& dest)
{ // Evaluate the previous passes first

previousPass . pass(arg);

// Build up the argument list (consisting of the data obtained

// from the DGOperator and the results of the previous passes)

TotalArgumentType totalArg(&arg, previousPass .localArg()):

// Do computations related to this pass (virtual function)

compute (totalArg , dest);

// Trigger the allocation of temporary memory
virtual void initialize () {}
private:
// The functions here are not part of the public interface but must be
// accessible by all other passes
template <class P, class PP, class PPP>
friend class Pass;
// Pass is called from preceding pass. The only difference to the
// application operator is that the use of this function causes the pass
// to use its own temporary discrete function instead of a given one
void pass(const GlobalArgumentType& arg) {
operator()(arg, xdest_);

// Return a list of the results of all previous passes including this one
NextArgumentType localArg () {
return NextArgumentType(dest , previousPass .localArg());
}
private:
// The actual computations are delegated to a subclass
virtual void compute(const TotalArgumentType& arg,
DestinationType & dest) = 0;
PreviousPass& previousPass_;
protected:
// Temporary storage. Subclass must initialism it when needed.
mutable DestinationType * dest_;

I

The implementation of the method compute is deferred to a subclass in order to allow for
different implementations, tailored to the user’s need. Moreover, Pass hides the intricate details
and compile-time constructs from the user and from the implementor of specific passes. The
following listing shows an example of such a derived Pass class. The FDPass class implements

14 A. Burri, A. Dedner, D. Diehl, R. Kléfkorn, M. Ohlberger

the finite difference evaluation of a numerical flux g, defined by its Problem template argument.
The compute method consists of an iteration over the grid which calls the numerical flux on
each grid node and returns the resulting update vector to the caller. Note that FDPass itself
is a generic implementation that works for a wide range of problem definitions, which the user
can express by writing a respective Problem class.

// Generic implementation of a first order FD scheme
// Problem must provide numeric flux function g
template <class Problem, class FunctionSpace , class PreviousPass>
class FDPass : public Pass<Problem, FunctionSpace, PreviousPass> {
public:
typedef Pass<Problem, FunctionSpace, PreviousPass > BaseType;
typedef typename BaseType:: TotalArgumentType ArgumentType;
typedef FunctionSpace DestinationType;
enum { passnr=Pass<Problem, FunctionSpace, PreviousPass >::passnr};
public:
// Constructor initializes base class and creates storage
FDPass(PreviousPass& prevPass ,Problem& prob,int pN) :
problem (prob), BaseType(prevPass), gridsize (pN) {}
// Builds up temporary storage for pass (the V_i)
virtual void initialize () {
this—>dest =mew DestinationType (gridsize «Problem ::range);
}
private:
typename Problem :: ConsType rflux ,w;
// Compute provides the actual evaluation of the operator belonging to
// this pass. arg is a list containing the argument data
// as well as the results
virtual void compute(const ArgumentType& arg, DestinationType& dest) {
dest.clear ();
double h=1./double(dest.size ());
StateVector<Problem ::domain> x|, xr;
x| [0]=0.;
xr[0]=1.;
w.clear ();
for (int i=0;i<dest.size();++i) {
if (i<dest.size()—1)
problem .g(i,i+1,xr,xl,arg, rflux);
else
rflux.clear ();
w—=rflux;
w/=(~h);
dest.set (i, ,w);
w=rflux;

}

Problem &problem ;
int gridsize ;

}

The next listing shows how the problem can be put into code. The class Problem implements
the scalar linear transport problem with an additional diffusion term from equation (33). Note
that this is the only part the user must write. Very little information about the other passes
is necessary, namely which components of the argument type contain the relevant information.
To simplify the usage, the problem class acts as an operator itself by just forwarding the call
to the last pass.

// The problem class organizes the passes and provides the functionality of an
// operator which can be used in a time-integrator.
class Problem {
private:
// Problem class for diffusion-pass dx (eps*v)
class ProblemDiffusion {
public:
enum {domain=1};
enum {range=1};
typedef StateVector<range> ConsType;

A Framework for Discretizing Evolution Equations

typedef DiscreteFunction <domain, range> DestinationType ;
ProblemDiffusion (double eps) :
koeff(eps) {}
// This method implements the numerical flux of the diffusion term d_xx u
template <class ArgumentType>
void g(int eleft ,int eright,
StateVector<domain> x|, StateVector <domain> xr,
const ArgumentType& arg, ConsType& dest) {
ConsType ul;
Element <0>::get(arg)—>evaluate(eleft ,xl,ul);
dest=koeffxul;
}
private:
double koeff;
}

// Problem class for Transport-pass dx (a*u-v)
class ProblemTransport { // dx (a*u-v)
public:
enum {domain=1};
enum {range=1};
typedef StateVector<range > ConsType;
typedef DiscreteFunction <domain, range> DestinationType ;
ProblemTransport (double a) : koeff(a) {}
// Implementation of the numerical (upwind) flux
template <class ArgumentType>
void g(int eleft ,int eright,
StateVector<domain> x|, StateVector <domain> xr,
const ArgumentType& arg, ConsType& dest) {
ConsType ul ,ur;
Element <0>::get(arg)—>evaluate(eleft ,xl,ul);
Element <0>::get(arg)—>evaluate(eright ,xr,ur);
if (koeff>0)
dest=koeffxul;
else
dest=koeffxur;

ConsType vr;
At<diffpass >::get(arg)—>evaluate(eright ,xr,vr);

dest—=vr;
}
private:
double koeff;
}
public:

// Argument/Destination type for operator
typedef DiscreteFunction <1, 1> GlobalArgumentType;
typedef GlobalArgumentType GlobalDestinationType;
// Constructor.
// The constructor of the problem initializes all problem and pass objects
Problem (double a,double eps,int N) :
N_(N),
probleml (eps), problem2(a),
passl(passO, probleml ,N),
pass2(passl,problem2 ,N) {
}
// The problem provides its own application operator and acts as a Dune
// operator imn its own right.
void operator() (const GlobalArgumentType& arg, GlobalDestinationType& dest) {
pass2(arg,dest);

// Size of the grid

int size () {
return N_;

}

private:

typedef PassStart<GlobalArgumentType> PassStartType;

typedef FDPass<ProblemDiffusion , DiscreteFunction <1, 1>, PassStartType>
PasslType;

typedef FDPass<ProblemTransport, DiscreteFunction <1, 1>, PasslType>
Pass2Type;

15

16 A. Burri, A. Dedner, D. Diehl, R. Kléfkorn, M. Ohlberger

int N_;

ProblemDiffusion probleml ;

ProblemTransport problem2;

PassStartType pass0;

PasslType passl;

Pass2Type pass2;

enum {diffpass=PasslType :: passnr,transpass=Pass2Type :: passnr };

}

Putting it all together consists of instantiating the problem class and initializing the correct
data. The evaluation of the operator finally is as simple as writing prob(data, sol), as can
be seen in the next listing. Here, the information about the time-stepping scheme is handled in
an additional class (ForwardEuler) not presented in this paper.

int main(int argc, char *x argv) {
int N=atoi(argv[1]); // number of grid nodes
double T=atof(argv([2]); // end time
double eps=atof(argv[3]); // viscosity
double a=atof(argv[4]); // advection velocity
// Creation of the problem and the corresponding operator
Problem prob(a,eps,N);
// Creation of the data vectors
Problem :: GlobalArgumentType uO(N), u(N);
// Creation of the timestepping operator (not defined here)
ForwardEuler <Problem> rk(prob ,0.);
// Initialization of the data
initData (u, u0);
//Time loop
while (rk.time()<T) {
rk(u,u);
std:: cerr << rk.time() << std::endl;

// Output result
outputResult (u);

4. Results and Conclusion

We apply the method to the Navier-Stokes-Korteweg system described in Subsection 2.4. For
definition of the averaged values and numerical fluxes we refer to [12|. Time discretization is
done by application of implicit Runge-Kutta methods.

As test case for the method we choose an initial configuration in two space dimensions
for which the solution of the Navier-Stokes-Korteweg system is quasi-known. This means the
solution is known to exist and can be computed very accurately by a different scheme. Figure 1
shows the result of this computation. The left part of the figure shows that the expected order
of the method will be reached, the right figure demonstrates the efficiency of the method i.e.
higher order methods lead to more efficient methods (provided that the solution is smooth).

References

[1] B. COCKBURN, C.-W. SHU (1998) The local discontinuous Galerkin method for time-
dependent convection-diffusion systems. SIAM J. Numer. Anal., 35: 2440-2463.

[2] P. BASTIAN, M. DROSKE, C. ENGWER, R. KLOFKORN, T. NEUBAUER, M. OHLBERG-
ER, M. RUMPF (2004) Towards a Unified Framework for Scientific Computing. In Proc.
of the 15th International Conference on Domain Decomposition Method.

A Framework for Discretizing Evolution Equations 17

1 T T T T T T 1e+06

001 * o p=4 |

E M/ . 3] 10000
F + E
g 0.0001 = / o 1 & L
S N E
\

L1
CPU-Time

100 —

Fig. 1. DG approximation for ansatz functions with different polynomial degree p. Mesh size h versus
L'-error (the black lines indicate the expected order) and L!-error versus CPU-time.

[3] A. BURRI, A. DEDNER, R. KLOFKORN, M. OHLBERGER (2005) An efficient implemen-
tation of an adaptive and parallel grid in DUNE. Tech. rep., Submitted to: Proceedings of
The 2nd Russian-German Advanced Research Workshop on Computational Science and
High Performance Computing, Stuttgart, March 14 - 16.

[4] G. DAL MAso, P. LEFLOCH, F. MURAT (1995) Definition and weak stability of noncon-
servative products. J. Math. Pures Appl., 74: 483-548.

[5] R. LEVEQUE (1990) Numerical Methods for Conservation Laws. Lectures in Mathematics,
Birkh&user, first edn.

[6] P. VOLLMOLLER (2004) A shock capturing wave propagation method for dry and fluid-
saturated granular flows. J. Comput. Phys., 199 (1): 150-174.

[7] P. BASTIAN, B. RIVIERE (2004) Discontinuous galerkin methods for two-phase flow in
porous media. Tech. Rep. 200428, IWR (SFB 359), Universitit Heidelberg.

[8] R. HELMIG (1997) Multiphase Flow and Transport Processes in the Subsurface: A con-
tribution to the modeling of hydrosystems. Springer.

[9] K. KUHN, M. OHLBERGER, J. SCHUMACHER, R. ZIEGLER, R. KLOFKORN (2003) A dy-

namic two-phase flow model of proton exchange membrane fuel cells. Preprint CSCAMM
Report 03-07, Submitted to the 2nd EUROPEAN PEFC FORUM, Luzern.

[10] T. PoiNsoT, D. VEYNANTE (2001) Theoretical and Numerical Combustion. R.T. Ed-
wards, Inc.

[11] D. ANDERSON, G. MCFADDEN, A. WHEELER (1998) Diffuse interface methods in fluid
mechanics. Ann. Rev. Fluid Mech., 30: 139-165.

[12] D. DIEHL (2005) Well balanced discontinuous Galerkin schemes for the Navier-Stokes-
Korteweg equations. Proceedings of HYP 2004, Yokohama Publishers, Inc.

