Outline

1 Motivation

2 Expressing Structure in FE Matrices

3 Performance

4 Solver Components

5 Agglomeration Algebraic Multigrid

6 Parallel Agglomeration Algebraic Multigrid

7 Conclusions
DUNE

- **Distributed Unified Numerics Environment (http://dune.uni-hd.de)**
 - Separate data structures and algorithm
 - Formulate algorithms based on interfaces
 - Provide different implementations of the interface
 - No lack performance due to generic programming
 - Parts of DUNE
 - Grid interface (not covered)

- **Iterative Solvers Library (ISTL)**

```plaintext
Algorithm
E.g. FE discretization
```

```plaintext
Mesh Interface (IF)
```

```plaintext
Structured grid
```

```plaintext
Unstructured simplicial grid
```

```plaintext
Unstructured multi–element grid
```

```plaintext
Incomplete Decomposition
```

```plaintext
Algebraic Multigrid
```

```plaintext
Sparse Matrix–Vector Interface
```

```plaintext
Compressed Row Storage (CRS)
```

```plaintext
Block CRS
```

```plaintext
Sparse Block CRS
```
Structure of ISTL

- There are already template libraries for linear algebra: MTL/ITL
- Existing libraries cannot efficiently use (small) structure of FE-Matrices
- Solver components: Based on operator concept, Krylov methods, (A)MG preconditioners
- Generic kernels: Triangular solves, Gauss-Seidel step, ILU decomposition
- Matrix-Vector Interface: Support recursively block structured matrices
- Various implementations of the interface are available
Example Definitions

- A vector containing 20 blocks where each block contains two complex numbers using double for each component:

  ```cpp
typedef FieldVector<complex<double>,2> MyBlock;
BlockVector<MyBlock> x(20);
x[3][1] = complex<double>(1,-1);
```

- A sparse matrix consisting of sparse matrices having scalar entries:

  ```cpp
typedef FieldMatrix<double,1,1> DenseBlock;
typedef BCRSMatrix<DenseBlock> SparseBlock;
typedef BCRSMatrix<SparseBlock> Matrix;
Matrix A(10,10,40,Matrix::row_wise);
... // fill matrix
A[1][1][3][4][0][0] = 3.14;
```
Block Structure in FE Matrices

sparse block matrix
blocks are dense
blocks have fixed size
DG fixed p

blocks are sparse
diffusion-reaction systems

blocks are dense
blocks have variable size
DG hp version

2x2 block matrix
each block is sparse
Taylor-Hood elements
Vector-Matrix Interface

- **Vector**
 - Is a one-dimensional container
 - Sequential access
 - Random access
 - Vector space operations: Addition, scaling
 - Scalar product
 - Various norms
 - Sizes

- **Matrix**
 - Is a two-dimensional container
 - Sequential access using iterators
 - Random access
 - Organization is row-wise
 - Mappings $y = y + Ax; y = y + A^T x; y = y + A^H x$
 - Solve, inverse, left multiplication
 - Various norms
 - Sizes
Performance

- Pentium 4 Mobile 2.4 GHz: Stream for $x = y + \alpha z$ is 1084 MB/s
- Compiler: GNU C++ compiler version 4.0
- Scalar product of two vectors (block size 1)

<table>
<thead>
<tr>
<th>N</th>
<th>500</th>
<th>5000</th>
<th>50000</th>
<th>500000</th>
<th>5000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFLOPS</td>
<td>896</td>
<td>775</td>
<td>167</td>
<td>160</td>
<td>164</td>
</tr>
</tbody>
</table>

- daxpy operation $y = y + \alpha x$, 1200 MB/s transfer rate for large N

<table>
<thead>
<tr>
<th>N</th>
<th>500</th>
<th>5000</th>
<th>50000</th>
<th>500000</th>
<th>5000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFLOPS</td>
<td>936</td>
<td>910</td>
<td>108</td>
<td>103</td>
<td>107</td>
</tr>
</tbody>
</table>

- Matrix-vector product, BCRSMatrix, 5-point stencil, b: block size

<table>
<thead>
<tr>
<th>N, b</th>
<th>100,1</th>
<th>10000,1</th>
<th>1000000,1</th>
<th>1000000,2</th>
<th>1000000,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFLOPS</td>
<td>388</td>
<td>140</td>
<td>136</td>
<td>230</td>
<td>260</td>
</tr>
</tbody>
</table>
template<class M, class X, class Y, class K>
static void dbgs (const M& A, X& x, const Y& b, const K& w) {

typedef typename M::ConstRowIterator rowiterator;
typedef typename M::ConstCollIterator coliterator;
typedef typename Y::block_type bblock;
typedef typename X::block_type xblock;

bblock rhs; X xold(x); rowiterator endi=A.end();
for (rowiterator i=A.begin(); i!=endi; ++i) { // loop over rows
 rhs = b[i.index()]; // initialize rhs
 coliterator endj=(*i).end(); // end of row i
 coliterator j=(*i).begin(); // start of row i
 for (; j.index()<i.index(); ++j) // lower triangle
 (*j).mmv(x[j.index()],rhs);
 coliterator diag=j;
 for (; j!=endj; ++j) // upper triangle
 (*j).mmv(x[j.index()],rhs);
 algmeta_itsteps<l-1>::dbgs(*diag,x[i.index()],rhs,w); //''solve''
}

x *= w; x.axpy(1-w,xold); // update with damping
}
Performance II

- Damped Gauss-Seidel solver
- 5-point stencil on 1000 by 1000 grid
- Comparison of generic implementation in ISTL with specialized C implementation in AMGLIB

<table>
<thead>
<tr>
<th></th>
<th>AMGLIB</th>
<th>ISTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time per iteration [s]</td>
<td>0.17</td>
<td>0.18</td>
</tr>
</tbody>
</table>

- Corresponds to about 150 MFLOPS
Operator and Solver Concept

Operator Concept

- Let $A : X \rightarrow Y$, $x \mapsto A(x)$ be a linear Operator with X, Y vector spaces.
- Class LinearOperator
 - apply(const X& x, Y& y) : $y = A(x)$
 - applyscaleadd(field_type alpha, const X& x, Y& y): $y = y + \alpha A(x)$
- Problem: Find $x \in X$ such that $A(x) = b$ for $b \in Y$.

Solver Concept

- Preconditioned iterative solvers, e.g. LoopSolver, CGSolver, BiCGStabSolver
- Inherit from abstract base class InverseOperator
- Use only abstract Operator interface functions, provided scalarproduct and preconditioner
Operator and Solver Concept

Operator Concept

• Let \(A : X \rightarrow Y, \ x \mapsto A(\mathbf{x}) \) be a linear Operator with \(X, \ Y \) vector spaces.

• Class LinearOperator

 • apply(const X& x, Y& y) : \(y = A(\mathbf{x}) \)

 • appliescaleadd(field_type alpha, const X& x, Y& y): \(y = y + \alpha A(\mathbf{x}) \)

• Problem: Find \(\mathbf{x} \in X \) such that \(A(\mathbf{x}) = \mathbf{b} \) for \(\mathbf{b} \in Y \).

Solver Concept

• Preconditioned iterative solvers, e. g. LoopSolver, CGSolver, BiCGStabSolver

• Inherit from abstract base class InverseOperator

• Use only abstract Operator interface functions, provided scalarproduct and preconditioner
Parallelism

- Solvers programmed to the interface of preconditioner, scalarproduct and operator.
- Parallelism is hidden in Operator, Preconditioner and Scalarproduct.
- E.g. OverlappingSchwarzScalarProduct, BlockPreconditioner, parallel agglomeration algebraic multigrid.

```cpp
typedef Dune::OverlappingSchwarzScalarProduct<
    Vector, Communication>
ScalarProduct;
typedef Dune::SeqJac<BCRSMat, Vector, Vector> SeqPrec;
typedef Dune::BlockPreconditioner<
    Vector, Vector, Communication, SeqPrec>
ParPrec;
ScalarProduct sp(comm);
SeqPrec sprec(fop.getmat(), 1, 1);
ParSmoothing pprec(spren, comm);
Dune::CGSolver<Vector> cg(fop, sp, pprec, 10e−08, 10, 0);
cg.apply(x, b, r);
```
Characteristics of Agglomeration AMG

Simple multigrid algorithm

- P_l: piecewise constant
- $R_l = P_l^T$
- $A_{l-1} = R_l A_l P_l$
- Proposed by Raw, Vanek et al., Braess

Clustering controlled by

- Strong coupling
- desired size (4, 8)
- minimize fill-in

Observations

- Preserves FV discretization
- Preserves sign of M-matrix
- $O(J)$ iterations for model problem in $d = 2, 3$
- Quite robust for variable coefficient elliptic problems
- $O(J)$ optimal anyway for 2d variable coefficient problems
- Reasonable coarse grid operator for systems
- Allows efficient data-parallel implementation
Characteristics of Agglomeration AMG

Simple multigrid algorithm

- P_l: piecewise constant
- $R_l = P_l^T$
- $A_{l-1} = R_l A_l P_l$
- Proposed by Raw, Vanek et al., Braess

Clustering controlled by

- Strong coupling
- desired size (4, 8)
- minimize fill-in

Observations

- Preserves FV discretization
- Preserves sign of M-matrix
- $O(J)$ iterations for model problem in $d = 2, 3$
- Quite robust for variable coefficient elliptic problems
- $O(J)$ optimal anyway for 2d variable coefficient problems
- Reasonable coarse grid operator for systems
- Allows efficient data-parallel implementation
Characteristics of Agglomeration AMG

Simple multigrid algorithm

- P_i: piecewise constant
- $R_i = P_i^T$
- $A_{i-1} = R_i A_i P_i$
- Proposed by Raw, Vanek et al., Braess

Clustering controlled by

- Strong coupling
- desired size (4, 8)
- minimize fill-in

Observations

- Preserves FV discretization
- Preserves sign of M-matrix
- $O(J)$ iterations for model problem in $d = 2, 3$
- Quite robust for variable coefficient elliptic problems
- $O(J)$ optimal anyway for 2d variable coefficient problems
- Reasonable coarse grid operator for systems
- Allows efficient data-parallel implementation
Scalar Elliptic Problem

- Solve $\nabla \cdot \{k(x, y)\nabla u\} = f$ in $(0, 1)^2$; $u = g$ on $\partial \Omega$
- AMG(2,2,1) SSOR used as preconditioner in CG
- Iteration numbers for 10^{-8} reduction

<table>
<thead>
<tr>
<th>N</th>
<th>$k(x, y) = 1$</th>
<th>$k(x, y) = \cdots$</th>
</tr>
</thead>
<tbody>
<tr>
<td>64^2</td>
<td>7</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>128^2</td>
<td>9</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>256^2</td>
<td>10</td>
<td>10^3</td>
</tr>
<tr>
<td>512^2</td>
<td>12</td>
<td>10^1</td>
</tr>
<tr>
<td>1024^2</td>
<td>14</td>
<td>\ldots</td>
</tr>
<tr>
<td>2048^2</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

- Coarsening costs about 3 iterations
Illustration of Agglomeration

Agglomeration is matrix dependent
Follows “strong” connections

homogeneous checker board anisotropic
Illustration of Algorithm
Scalability Results

CG + AMG prec. + Jacobi(2) smoother, 10^{-8} residual reduction

2D heterogeneous problem: $P \cdot 2000^2$, max. $1.6 \cdot 10^9$ unknowns.

<table>
<thead>
<tr>
<th>P</th>
<th>1</th>
<th>4</th>
<th>16</th>
<th>64</th>
<th>256</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{build}[s]$</td>
<td>96</td>
<td>103</td>
<td>110</td>
<td>118</td>
<td>123</td>
<td>128</td>
</tr>
<tr>
<td>$T_{solve}[s]$</td>
<td>209</td>
<td>298</td>
<td>331</td>
<td>366</td>
<td>410</td>
<td>407</td>
</tr>
<tr>
<td>$T_{it}[s]$</td>
<td>8.0</td>
<td>9.9</td>
<td>10.0</td>
<td>10.2</td>
<td>10.3</td>
<td>10.4</td>
</tr>
<tr>
<td>#IT</td>
<td>26</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

3D heterogeneous problem $P \cdot 150^3$, max. $7.3 \cdot 10^8$ unknowns.

<table>
<thead>
<tr>
<th>P</th>
<th>1</th>
<th>8</th>
<th>27</th>
<th>64</th>
<th>125</th>
<th>216</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{build}[s]$</td>
<td>216</td>
<td>228</td>
<td>242</td>
<td>245</td>
<td>251</td>
<td>276</td>
</tr>
<tr>
<td>$T_{solve}[s]$</td>
<td>213</td>
<td>352</td>
<td>294</td>
<td>467</td>
<td>519</td>
<td>443</td>
</tr>
<tr>
<td>$T_{it}[s]$</td>
<td>7.6</td>
<td>9.8</td>
<td>7.7</td>
<td>10.2</td>
<td>9.1</td>
<td>10.3</td>
</tr>
<tr>
<td>#IT(10^{-8})</td>
<td>28</td>
<td>36</td>
<td>38</td>
<td>46</td>
<td>57</td>
<td>43</td>
</tr>
</tbody>
</table>
Conclusions

- ISTL is based on the following principles
 - Matrix and vector interface recursive block structure.
 - Algorithms use structure of the finite element methods.
 - No performance lack.
 - Same solver algorithms and code for all implementations due to generic programming.
 - Solver algorithms support sequential and parallel usage.
 - Robust preconditioners for heterogeneous problems

- Current plans
 - Release 1.0 of Dune http://dune.uni-hd.de
 - Apply AMG to DG discretizations (next talk!)