Gmsh: general overview and recent
developments

C. Geuzaine and J.-F. Remacle
Université de Liege and Université catholique de Louvain

Dune User Meeting — September 28, 2023

W ¥ LIEGE

université

Some background

| am a professor at the University of Liege in Belgium, where | lead a team
of about 15 people in the Montefiore Institute (EECS Dept.), at the
intersection of applied math, scientific computing and engineering physics

e Our research interests include modeling, analysis, algorithm development,
and simulation for problems arising in various areas of engineering and
science

e Current applications: low- and high-frequency electromagnetics, geophysics,
biomedical problems

e We write quite a lot of codes, some released as open source software:
https://gmsh.info, https://getdp.info, https://onelab.info

https://gmsh.info
https://getdp.info
https://onelab.info

W UCLouvain
Some background

e | am a professor at the Université catholique de Louvain in Belgium, where |
lead a team of a dozen researchers in the Institute of Mechanics, Materials
and Civil Engineering

e My main research topics are mesh generation and computational mechanics

e | have been co-operating with Christophe for more than 20 years, a fruitful
collaboration that has led to the creation of Gmsh

W ¥ LIEGE

université

B UCLouvain

What is Gmsh?

e Gmsh (https://gmsh.info) is an open source 3D finite element mesh

generator with a built-in CAD engine and post-processor

Gmsh

e Includes a graphical user interface (GUI) and can drive any simulation code
through ONELAB

e Today, Gmsh represents about 400k lines of C++ code

still same 2 core developers; about 100 with > 1 commit

about 2,500 registered users on the development site
https://gitlab.onelab.info

about 15,000 downloads per month (70% Windows)

about 900 citations per year — the Gmsh paper is cited about 7,500 times
Gmsh has probably become one of the most popular (open source) finite
element mesh generators?

https://gmsh.info
https://gitlab.onelab.info

30/01/2020

3
1

~ 22 years of Gmsh develdpgiient in 1 minute

A warm thank you to all'the contributors!

https://gmsh.info/doc/gource_faster.mp4
https://gmsh.info/CREDITS.txt

P HEEE B UCLouvain
« A little bit of history

e Gmsh was started in 1996, as a side project

e 1998: First public release

e 2003: Open Sourced under GNU GPL

e 2006: OpenCASCADE integration (Gmsh 2)

e 2009: IJNME paper and switch to CMake

e 2012: Curvilinear meshing and quad meshing

e 2013: Homology and ONELAB solver interface

e 2015: Multi-Threaded 1D and 2D meshing (coarse-grained)
e 2017: Boolean operations and switch to Git (Gmsh 3)

e 2018: C++, C, Python and Julia APl (Gmsh 4)

e 2019: Multi-Threaded 3D meshing (fine-grained), robust STL remeshing
e 2021: GmshFEM, Quasi-structured quad meshing

e 2022: GmshDDM, Fortran API

i, !l.nleerCSiIE B UCLouvain

Strategic choices

e Design goals: fast, light and user-friendly

Written in simple C++

GUIs: FLTK (desktop), UIKit (iOS), Android

OpenGL graphics

Highly portable (OSes & compilers)

Easy to distribute & install: zero dependencies on installation

¢ Handling of numerous third party libraries

e Build system based on CMake — everything is optional
e Some libs integrated and redistributed directly in gmsh/contrib (HXT,
BAMG, Concorde, ...)

e Funding
e Hobby until 2006, then industry, Wallonia, Belgium & EU

% * LIEGE . i ¥ UCLouvain
Strategic choices

e Community infrastructure
e Our own (using GitLab) to enable public/private parts
(https://gitlab.onelab.info/gmsh/gmsh)
o Continuous integration and delivery (Cl/CD) of Gmsh app and Gmsh SDK
on Windows, Linux and macOS
e Web site (https://gmsh.info) with documentation, tutorials, etc.
e Scientific aspects of algorithms detailed in journal papers
e Licensing
o Gmsh is distributed under the GNU General Public License v2 or later, with
exceptions to allow for easier linking with external libraries
e We double-license to enable embedding in commercial codes

https://gitlab.onelab.info/gmsh/gmsh
https://gmsh.info

:». LIEGF . B UCLouvain
Basic concepts

e Gmsh is based around four modules: Geometry, Mesh, Solver and
Post-processing

e Gmsh can be used at 3 levels

e Through the GUI
e Through the dedicated .geo language
e Through the C4++, C, Python, Julia and Fortran API
e Main characteristics
e All algorithms are written in terms of abstract model entities, using a
Boundary REPresentation (BREP) approach

e Gmsh never translates from one CAD format to another; it directly accesses
each CAD kernel API (OpenCASCADE, Built-in, ...)

:L‘ uLnllvEeg’ltEe . [B UCLouvain
Basic concepts

The goal is to deal with very different underlying data representations in a
transparent manner

> .“'\Y‘\' o
RS
BT
Wsnd)

10

% ® LIEGE B UCLouvain

université

Geometry module

Under the hood, 4 types of model entities are defined:

1.

Model points GY that are topological entities of dimension 0

2. Model curves G} that are topological entities of dimension 1
3.
4. Model volumes G? that are topological entities of dimension 3

Model surfaces G? that are topological entities of dimension 2

11

W ¥ LIEGE

université

Geometry module

Model entities are topological entities, i.e., they only deal with adjacencies in
the model; a bi-directional data structure represents the graph of adjacencies

0 _ 1 2 . 13
K =Gl=G =G

Any model is able to build its list of adjacencies of any dimension using local
operations

The BRep is extended with non-manifold features: adjacent entities, and
embedded (internal) entities

Model entities can be either CAD entities (e.g. from the built-in or
OpenCASCADE kernel) or discrete entities (defined by a mesh, e.g. STL)

B UCLouvain

12

W ¥ LIEGE

université

B UCLouvain
Geometry module

The geometry of a CAD model entity depends on the solid modeler kernel for its

underlying representation. Solid modelers usually provide a parametrization of
the shapes, i.e., a mapping:

peR'— xeR?

1. The geometry of a model point GY is simply its 3-D location x; = (x;, y;, 2;)
2. The geometry of a model curve G} is its underlying curve C; with its
parametrization p(t) € C;, t € [ty]

3. The geometry of a model surface G? is its underlying surface S; with its
parametrization p(u,v) € S;

4. The geometry associated to a model volume is R3

13

W ¥ LIEGE

université

Geometry module

Y

z
u = u(z,y, 2)
v vevle)
Lu \\\\ //
\\\ / = t, = t, = t
e e =alt. =05 =0
o~) C
tp P ty

Point p located on a curve C that is itself embedded in a surface S

[N UCLouvain

14

U LIEGE W UCLouvain
Geometry module

Operations on CAD model entities are performed directly within their respective
CAD kernels:

e There is no common internal geometrical representation

o Rather, Gmsh directly performs the operations (translation, rotation,

intersection, union, fragments, ...) on the native geometrical representation
using each CAD kernel’s own API

15

:g H,\,EQEE W UCLouvain
Geometry module
Discrete model entities are defined by a mesh (e.g. STL):

e They can be equipped with a geometry through a reparametrization
procedure

e The parametrization is then used for meshing, in exactly the same way as for
CAD entities

16

% * LIEGE ¥ UCLouvain
Mesh module

e Gmsh implements several meshing algorithms with specific characteristics
e 1D, 2D and 3D

Structured, unstructured and hybrid

Isotropic and anisotropic

Straight-sided and curved

From standard CAD data or from STL through reparametrization

e Built-in interfaces to external mesh generators (BAMG, MMG3D, Netgen)

17

université

w # LIEGE
&

FASVAN
Ay
SR

A
AFSR
oAl
B

A
C
7
<§a>
=

Typical CAD kernel idiosyncrasies:

Mesh module

)
7
7
A

A
A ers)
AT
Z;

&
v
=

S

</

257

ZETET

A;
7
Eqrat
57
=X

WV
Z A2

=5

K
L7
Sk

L7

v
A

2%

7
%

AL

VAVAY
SRERX

7\
uvgé

T
v

Ay
X

)

e

ravay
o0
v

=i
SRS
'"EV)
o
57
3

vavis
VA
K

AN
S
K

7a

A
LR AR
“2 4}4! ‘A‘;"“:‘%’
45 FERAALY
e o
7 Ao
B AR
73 DGR
2 R
VN

N
N
X
20T
)Q‘L

<1
£
v

]

X
v'“";um

SO
X
[
™
= A

;

oo

I ‘5‘%‘
W
i

vﬂsb
PRI

ek
)
LV val

"y

¥
=

5

XY

g

S
2

L%

5

Pl
SR
5

=7
v

S

v
3
g

2
AVav,
%
S,
IS

KH

2ot
4V
S

2L
5
=

5

iy
PARRA
i
i
R
o

Svama

VR

VAV
""A‘VAVAVAVA

[B UCLouvain

»
I

NN
SR
g
f
il

s,
SO,
KRN

I~

i
oy
O
YK

vare

TasA v

e
avavatPavavy
VAVAVAW |

Yava

A
PAVAVar
TAVAv. S
AV
KA

>
o

b
/|
avavins

seam edges and degenerated edges

18

:». LIEGF B UCLouvain
Mesh module

e Mesh data is made of elements (points, lines, triangles, quadrangles,
tetrahedra, hexahedra, ...) defined by an ordered list of their nodes

o Elements and nodes are stored (classified) in the model entity they
discretize:

e A model point will thus contain a mesh element of type point, as well as a
mesh node

e A model curve will contain line elements as well as its interior nodes, while
its boundary nodes will be stored in the bounding model points

e A model surface will contain triangular and/or quadrangular elements and all
the nodes not classified on its boundary or on its embedded entities (curves
and points)

e A model volume will contain tetrahedra, hexahedra, etc. and all the nodes
not classified on its boundary or on its embedded entities (surfaces, curves
and points)

19

U LIEGE W UCLouvain
Mesh module

This mesh data structure allows to easily
and efficiently handle the creation,
modification and destruction of
conformal finite element meshes

20

:L" UL,,!\,EQEE ¥ UCLouvain
Solver module

e Gmsh implements a ONELAB (https://onelab.info) server to pilot
external solvers, called “clients”

o Example client: GetDP finite element solver (https://getdp.info)

e The ONELAB interface
allows to call such clients
and have them share
parameters and modeling
information

e Parameters are directly
controllable from the
GUI

21

https://onelab.info
https://getdp.info

W ¥ LIEGE

université

Solver module

e The implementation is based on a client-server model, with a server-side
database and local or remote clients communicating in-memory or through
TCP/IP sockets

e Contrary to most solver interfaces, the ONELAB server has no a priori
knowledge about any specifics (input file format, syntax, ...) of the clients

e This is made possible by having any simulation preceded by an analysis
phase, during which the clients are asked to upload their parameter set to
the server

e The issues of completeness and consistency of the parameter sets are
completely dealt with on the client side: the role of ONELAB is limited to
data centralization, modification and re-dispatching

B UCLouvain

22

i ¥ LIEGE B UCLouvain

université

Post-processing module

e Post-processing data is made of views

e A view stores both display options and data (unless the view is an alias of
another view)

o View data can contain several steps (e.g. to store time series) and can be
either linked to one or more models (mesh-based data, as stored in .msh or
.med files) or independent from any model (/ist-based data, as stored in
parsed .pos files)

e Data is interpolated through arbitrary polynomial interpolation schemes;
automatic mesh refinement is used for adaptive visualization of high-order
views

e Various plugins exist to create and modify views

23

& LIEGE i ¥ UCLouvain
Post-processing module

Cuts, iso-curves and vectors

Elevation maps

Streamlines

Adaptive high-order visualization

24

:»’ HEEE N UCLouvain
Recent developments: last 5 years

e Constructive Solid Geometry
Application Programming Interface (API)
Multi-Threaded meshing

Robust STL remeshing based on parametrizations

Quasi-structured quad meshing
GmshFEM and GmshDDM

25

‘ iLI_EGE [UCLouvain
R 5% Constructive Solid Geometry

— \a
/ o\

OO&%
S

https://en.wikipedia.org/wiki/Constructive_solid_geometry

26

https://en.wikipedia.org/wiki/Constructive_solid_geometry

5 ® LIEGE W UCLouvain
et Constructive Solid Geometry

SetFactory ("OpenCASCADE"); // use OpenCASCADE kernel

R = DefineNumber[1.4 , Min 0.1, Max 2, Step 0.01,
Name "Parameters/Box dimension"];

Rs = DefineNumber[R*.7 , Min 0.1, Max 2, Step 0.01,
Name "Parameters/Cylinder radius"];
Rt = DefineNumber[R*1.25, Min 0.1, Max 2, Step 0.01,

Name "Parameters/Sphere radius" 1;
Box(1) = {-R,-R,-R, 2*R,2*R,2*R}; // explicit entity tag
Sphere(2) = {0,0,0, Rt};

BooleanIntersection(3) = { Volume{1}; Delete; }{ Volume{2}; Delete; I};
// delete object and tool
Cylinder (4)
Cylinder (5)
Cylinder (6)

{-2%R,0,0, 4%R,0,0, Rs};
{0,-2*xR,0, 0,4*R,0, Rs};
{0,0,-2%xR, 0,0,4*R, Rs};

BooleanUnion(7) = { Volume{4}; Delete; }{ Volume{5,6}; Delete; };
BooleanDifference(8) = { Volume{3}; Delete; }{ Volume{7}; Delete; };

27

LIEGE ¥ UCLouvain
R 5% Constructive Solid Geometry

[JON) Gmsh - boolean.geo
v Modules
» Geometry
» Mesh
» Solver
v Parameters
14 :| |z Block dimension
0.98 :| ¢ || cylinder radius
[75 :| Q|| sphere radius

—
e

=

=

\
(|

=L

¥

AV

=

| o]

SO0XYZQ 118 14 b (b Donemeshing 2D (141744 s)

gmsh/examples/boolean/boolean.geo

28

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/boolean/boolean.geo

m * LIEGE ¥ UCLouvain
et Constructive Solid Geometry

SetFactory ("OpenCASCADE");

DefineConstant [
z = {16, Name "Parameters/z position of box"}
sph = {0, Choices{0,1}, Name "Parameters/Add sphere?"}
1;

a() = ShapeFromFile("component8.step"); // import STEP shape
b0 = 2;
Box(b(0)) = {0,156,z, 10,170,z+10};

If (sph)

b() += 3;

Sphere(b(1)) = {0,150,0, 20};
EndIf

// fragmentation intersects everything
r() = BooleanFragments{ Volume{a()}; Delete; }{ Volume{b()}; Delete; 1};
Save "merged.brep"; // save into native OpenCASCADE format

Physical Volume("Combined volume", 1) = {r()};
Physical Surface("Combined boundary", 2) = CombinedBoundary{ Volume{r()}; }

29

LIEGE
L e Constructive Solid Geometry

eve Gmsh - import.geo
v Modules
» Geometry
» Mesh

» Gmsh
v Parameters
¥ Add sphere?

16 :| @ || z position of block

Sy

S\ —
NAVAN

v

A .
e

ﬂ,i’ (-18.4752,150,-20) '\\b' 7\

E0XYZC 118 i 4> 1 Donemeshing 2D (0.499587 s)

I
[\

=
.4 <
~‘- VIS

B UCLouvain

(18.4752,188.5,26)

gmsh/examples/boolean/import.geo

30

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/boolean/import.geo

W ¥ LIEGE

université . - B UCLouvain
Constructive Solid Geometry

e All existing .geo commands are conserved
e New or modified .geo commands:

e Shapes (with explicit numbering): Circle, Ellipse, Wire, Surface,
Sphere, Box, Torus, Rectangle, Disk, Cylinder, Cone, Wedge,
ThickSolid, ThruSections, Ruled ThruSections

e Operations (implicit numbering): ThruSections, Ruled ThruSections,
Fillet, Extrude

e Boolean operations (explicit or implicit numbering): BooleanUnion,
BooleanIntersection, BooleanDifference, BooleanFragments

o Other: ShapeFromFile, Recursive Delete

31

:ﬁ HEEE . . . B UCLouvain
Application Programming Interface

Gmsh 4 introduces a new stable Application Programming Interface (API) for
C++, C, Python, Julia and Fortran, with the following design goals:

e Allow to do everything that can be done in .geo files
e ... and then much more!

e Be robust, in particular to wrong input data (i.e. “never crash”)
o Be efficient; but still allow to do simple things, simply

e Be maintainable over the long run

32

:ﬁ uLnllvEegtEe . . . B UCLouvain
Application Programming Interface

To achieve these goals the Gmsh API
e is purely functional

e only uses basic types from the target language (C++, C, Python, Julia and
Fortran)

e is automatically generated from a master API description file

e is fully documented

33

% * LIEGE B UCLouvain
L et Application Programming Interface

Same boolean example as before, but using the Python API:

import gmsh

gmsh.initialize ()
gmsh.model.add("boolean")

R =1.4; Rs = R*¥.7; Rt = Rx1.25

gmsh.model.occ.addBox(-R,-R,-R, 2*R,2*R,2%R, 1)
gmsh.model.occ.addSphere(0,0,0,Rt, 2)
gmsh.model.occ.intersect ([(3, 1)1, [(3, 2)]1, 3)
gmsh.model.occ.addCylinder (-2*R,0,0, 4*R,0,0, Rs, 4)
gmsh .model.occ.addCylinder (0,-2%R,0, 0,4*R,0, Rs, 5)
gmsh.model.occ.addCylinder (0,0,-2%xR, 0,0,4%R, Rs, 6)
gmsh.model.occ.fuse([(3, 4), (3, 5)1, [(3, 6)], 7)
gmsh.model.occ.cut ([(3, 3)], [(3, 7)1, 8)

gmsh.model.occ.synchronize ()
gmsh.model .mesh.generate (3)
gmsh.fltk.run()
gmsh.finalize ()

gmsh/examples/api/boolean.py

34

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/boolean.py

% * LIEGE [l UCLouvain
& et Application Programming Interface

or using the C++ API:

#include <gmsh.h>

int main(int argc, char **argv)

{
gmsh::initialize (argc, argv);
gmsh::model::add("boolean");
double R = 1.4, Rs = R*.7, Rt = R*x1.25;
std::vector<std::pair<int, int> > ov;
std::vector<std::vector<std::pair<int, int> > > ovv;
gmsh:: ::addBox (-R,-R,-R, 2%R,2%R,2%R, 1);
gmsh:: addSphere (0,0,0,Rt, 2);
gmsh:: intersect ({{3, 1}}, {{3, 2}}, ov, ovv, 3);
gmsh:: addCylinder (-2%R,0,0, 4*R,0,0, Rs, 4);
gmsh:: addCylinder (0,-2%R,0, 0,4%R,0, Rs, 5);
gmsh:: addCylinder (0,0,-2*%R, 0,0,4*R, Rs, 6);
gmsh:: fuse ({{3, 4}, {3, 5}}, {{3, 6}}, ov, ovv, T7); L
gmsh:: :cut ({{3, 3}}, {{3, 7}}, ov, ovv, 8); E—
gnsh::model::occ::synchronize ();
gmsh:: ::mesh::generate(3);
gmsh:: trrun();
gmsh::finalize();
return O0;
¥

gmsh/examples/api/boolean.cpp

35

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/boolean.cpp

i, !l.nleerCSiIE B UCLouvain

Application Programming Interface

In addition to CAD creation and meshing, the APl can be used to
o Access mesh data (getNodes, getElements)

e Generate interpolation (getBasisFunctions) and integration
(getJacobians) data to build Finite Element and related solvers (see e.g.
gmsh/examples/api/poisson.py)

o Create post-processing views
e Run the graphical user-interface

e Build custom graphical user-interfaces, e.g. for domain-specific codes (see
gmsh/examples/api/prepro.py or
gmsh/examples/api/custom_gui.py) or co-post-processing via ONELAB

36

https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/poisson.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/prepro.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.py

université

;g LIEGE . . . W UCLouvain
Application Programming Interface

In order to make this API easy to use, we publish a binary Software Development
Toolkit (SDK):

e Continuously delivered (for each commit in master), like the Gmsh app

e Contains the dynamic Gmsh library together with the corresponding C++/C
header files, and Python, Julia and Fortran modules

Download
Gmsh is distributed under the terms of the GNU General Public License (GPL):

« Current stable release (version 4.8.0, 2 March 2021):

o Download Gmsh for Windows 64-bit, Windows 32-bit, Linux 64-bit, Linux 32-bit or MacOS
o Download the source code

o Download the Software Development Kit (SDK) for Windows 64-bit, Windows 32-bit, Linux 64-bit, Linux 32-bit or MacOS
o Download both Gmsh and the SDK with pip: 'pip install --upgrade gush'

Make sure to read the tutorials before sending questions or bug reports.
« Development version:
o Download the latest automatic Gmsh snapshot for Windows 64-bit, Windows 32-bit, Linux 64-bit, Linux 32-bit or MacOS
o Download the latest automatic source code snapshot
o Download the latest automatic SDK snapshot for Windows 64-bit, Windows 32-bit, Linux 64-bit, Linux 32-bit or MacOS
o Access the Git repository: 'sit clone https://gitlab.onelab. info/gnsh/gnsh.git'
o Download the latest automatic snapshot of both Gmsh and the SDK with pip: 'pip install --force-reinstall --no-cache-dir gnsh-dev'

37

i ¥ LIEGE B UCLouvain

université

Multi- Threaded meshing

Most meshing algorithms are now multi-threaded using OpenMP:

e 1D and 2D algorithms are multithreaded using coarse-grained approach, i.e.
several curves/surfaces are meshed concurrently

e The new 3D Delaunay-based algorithm (HXT) is multi-threaded using a
fine-grained approach. It currently lacks several features (hybrid meshes, ...),
which will eventually be supported

You can specify the number of threads with the General.NumThreads option
(set it to O to use the system value), or with the -nt command line switch: gmsh
file.geo -3 -nt 8 -algo hxt

38

w * LIEGE] . :
&y vmiversic Multi-Threaded meshing [UCLouvain

? 1 #verices 10* 105 10° 107
e Ours 0032 013 085 7.40
Lt Geogram 0.041 0.19 173 17.11

o1 | | CGAL 0037 024 220 2337

10 10° 10° 107

Number of points (random uniform distribution)

(a) 4-core Intel® Core™ i7-6700HQ CPU.

RS Lz i
g e #vertices 10* 10° 10° 107 108
E T Ours 011 043 117 448 2895
1E E Geogram 0.10 0.54 4.58 43.70 /
e CGAL 027 048 244 2015 /

I I
10* 108 10° 107 10°

Number of points (random uniform distribution)

(b) 64-core Intel® Xeon Phi™ 7210 CPU.

[C. Marot et al., JNME 2019]

39

s LIEGE : . UcLouval
L Multi-Threaded meshing W UCLouvaln

Truck tire

Timings (s)
BR Refine Total

123640429 759 259.7 364.7
123593913 745 166.8 267.1
123625696 742 107.4 203.6
123452318 742 95.5 190.0

#threads # tetrahedra

© AN =

«L,‘ "‘\“\

§‘M “3\ o ircraft
.;;b w"% Aircrafi

Timings (s)
BR Refine Total

1 672209630 452 13485 14183
2 671432038 42.1 11489 12115
8 665826109 39.6 7148 7748
64 664587093 387 3223 380.9
127 663921974 38.1 2550 3133

threads # tetrahedra

AMD EPYC 2x 64-core

40

& LIEGE i) W UCLouvain
Multi- Threaded meshing

100 thin fibers

Timings (s)
Refine Total
1 325611841 3.1 492.1 4972
2 325786170 2.9 3297 3343
4 325691796 2.8 2295 2339
8 325211989 27 1546 158.7

16 324897471 2.8 96.8 100.9

32 325221244 2.7 717 758

64 324701883 2.8 558 60.1

127 324190447 29 476 520

#threads # tetrahedra

500 thin fibers

Timings (s)
BR Refine Total

1 723208595 18.9 1205.8 1234.4
2 723098577 160 780.3 804.8
4 722664991 86.6 567.1 659.8
8 722329174 158 349.1 370.1
16 723093143 156 2162 236.5
32 722013476 156 149.7 169.8
64 721572235 159 1197 1404
127 721591846 159 1142 1352

#threads # tetrahedra

AMD EPYC 2x 64-core

41

i, !I.nleerCSiIE B UCLouvain

Robust STL remeshing

New pipeline to remesh discrete surfaces (represented by triangulations):

e Automatic construction of a set of parametrizations that form an atlas of
the model

e Each parametrization is guaranteed to be one-to-one, amenable to meshing
using existing algorithms

o New nodes are guaranteed to be on the input triangulation (“no modelling”)

e Optional pre-processing (i.e. edge detection) to color sub-patches if sharp
features need to be preserved

[P. A. Beaufort et al., JCP 2020]

42

U LIEGE) W UCLouvain
Robust STL remeshing

N\ R
N

Batman STL mesh

43

v

LIEGE W UCLouvain

université

Robust STL remeshing

&-

Automatic atlas creation: each patch is provably parametrizable by solving a
linear PDE, using mean value coordinates

44

¥ LIEGE

université

SRR
S

£
Loy

et
5
ot
55

3
Ko

XL
RO

£

Robust STL remeshing ¥ UCLouvain

A
AR
RN
ARSI LTI
S

5 EE

A
Pl
aemn:
ISR
A,
por

K
Toodes
P
R

e
e
-
SR
KL S
Smava
RO
YA
RCKRN
Xt

x
#Z

A
iy

B
G A
et aae I
SRS,
e A i AV
=

X
REH

K

<LT
i

A
%
Ny

vas
%
3
¥
S
o
S
£
S

s
ot
e

AL
2

(S,
S
A
R
SS

AR
Sl
Fese]
FE
I
PO

48

5
Py
e
1
X
o

PR,
SRR S L 3]

i
i
M
i
|
fl

7
i
Ry
7
o
S
ShEREE

o
SE

=2
'fvmv'
£y SR KK AR
AV TS s s KA Y

O R

%
vy

S
X
i,

o

g AT %

2
o LAY
R) oA
SIS SESE, R e
TR

RECET
A

Kl
7

59

B

AL TR
BRI RN
SR

i

Remeshing

45

U LIEGE) W UCLouvain
Robust STL remeshing

Automatic atlas creation, this time with feature edge detection

46

~

LIEGE

[UCLouvain

Robust STL remeshing

té

universi

S
ez

e
i IR
IR
KA NPERORO0)
(RARIoRE
e
N TATATATATS S S
AT N STETA S S
eyt S AT S N
Bl T
N T A eat S S
M e S)
0 FO ARSI
e A
5o i
K e
v ?
==

S
2

Vv Yy

S
s

Aiéﬁﬁv
YaYi
RvATAVLi

)

S
A
2

S

&
<l
i
Y

s
Vi
iV

Vi

ATAYS

i

5
N

e
ELAE
%

e
<35
,v;ﬁﬁ
=
KIS
AR

!
KWK
i

o
17
K
=2
ATAV,
ik
A

Ava®
i

£

DEARTISIR
RS
AN S

g vavavawa s S
AR waitls

Sl
T
s

oL RERS
R ORI
KT

P

R ERRE
Sy
ISR
AR
AR
YLy
KN4

S

R
L

A
N

A

i

0

AT LA TS
AT
AR LSO
TSRS
/AR
A
RS
8
s

SIS,
SES
e,

TaI
R
R

N7
Dl
DRSS
EhR
VAV,
'ﬁ"“
o

S5
AL

AT

Remeshing with feature edge detection

a7

% * LIEGE | UCLouvain
et Robust STL remeshing

CT scan of an artery: 101 patches created, most because of the large aspect ratio

48

B UCLouvain

té

universi

¥ LIEGE

Robust STL remeshing

2k
B

Al

AV
.

R

Y %Y
b><00"Anw

mesh adapted

ion

1zat

715 patches created for reparametr

Remeshing of a skull

to curvature

49

;ﬁ !,:,I,\EEE . W UCLouvain
Robust STL remeshing

Remeshing of an X-ray tomography image of a silicon carbide foam by P. Duru,
F. Muller and L. Selle (IMFT, ERC Advanced Grant SCIROCCO): 1,802 patches
created for reparametrization

50

U LIEGE i i W UCLouvain
Quasi-structured quad meshing

New experimental algorithm for full-quad meshes [M. Reberol et al. 2021]

Compute a (scaled) cross-field with multilevel diffusion

51

w H,\,EQEE . . B UCLouvain
Quasi-structured quad meshing

=3
SN
S
CSCOTLS S,

ey
I 77777 ZZ
e
Z
iy T L
ZRELLR>

7777
17177 Z

I

T

Build a unstructured quadrilateral mesh with a frontal approach guided by the
scaled cross field

52

université

:u LIEGE]] W UCLouvain
Quasi-structured quad meshing

Pattern-based quadrilateral meshing and cavity remeshing to eliminate
unnecessary irregular vertices while preserving the cross field singularities

53

U LIEGE . i W UCLouvain
Quasi-structured quad meshing

The final quad mesh is very similar to the one obtained with the global
parametrization approach and has the same number of irregular vertices

54

université

w # LIEGE
&

[B UCLouvain

Quasi-structured quad meshing

“Block” model: 533 surfaces,
1584 curves, 261.5k vertices,
261.6k quads

Average SICN quality: 0.87
(minimum: 0.11)

58 sec. (initial unstructured
quad mesh) + 33 sec.
(quasi-structured improvement)
on Intel Core i7 4 cores
Quasi-structured improvement

reduces the number of irregular
from 14.4k to 3.6k

55

:»» !l_nIWEerCSiIE B UCLouvain

GmshFEM and GmshDDM

New C++ finite element and domain decomposition libraries based on the Gmsh
API [A. Royer et al. 2022]

e Symbolic symbolic high-level description of weak formulations
General coupled formulations in 1D, 2D, 2D-axi and 3D

Arbitrarily high-order Lagrange and hierarchical basis functions
Scalar and vector fields (L2, H1, H(curl)) on hybrid, curved meshes

Real and complex arithmetic, single or double precision

Parallelization and linear algebra backends:

e GmshFEM multi-threaded using OpenMP, linear algebra using Eigen
and PETSc, eigensolver using SLEPc FEM

-

e GmshDDM: distributed memory parallelization using MPI, iterative
Krylov solver using PETSc (incl. HPDDM)

>

DDM

56

W ¥ LIEGE

universie GmshFEM and GmshDDM

// Domains
Domain omega("omega"), gammaScat("scat"), gammaExt("ext");

// Finite element field

Field<Scalar, form::Form0> u("u", omega,
functionSpaceH1::HierarchicalH1l,
6); // polynomial degree 6

// Dirichlet constraint

complex<double> im = complex<double>(0., 1.);

double k = 50;

Function<complex<double>, Degree::Degree0> ulnc =
exp<complex<double>>(im * k * z<complex<double>>());

u.addConstraint (gammaScat, -ulnc);

// Weak formulation
Formulation<Scalar> f("helmholtz");

const string g = "Gaussl2";

f.integral(grad (dof (u)), grad(tf(u)), omega, g);
f.integral(- k * k * dof(u) , tf(u) , omega, g);
f.integral (- im * k * dof (u) , tf (u) , gammaExt, g);

[N UCLouvain

57

¥ LIEGE vain
L et GmshFEM and GmshDDM W Uctouve

Acoustic noise from a turbofan engine intake (1 billion dofs, 1024 partitions)
[P. Marchner et al. 2022]

58

:»’ !,',,!EEE . . B UCLouvain
Conclusions and perspectives

e Overview of Gmsh and recent developments:
e Constructive Solid Geometry
Application Programming Interface
New multi-threaded algorithms
Robust STL remeshing based on parametrizations

Quasi-structured quad meshing
o GmshFEM and GmshDDM

e Many exciting developments in the pipeline:

e Improved high-order remeshing
e Hex-dominant meshes
e Boundary layers?

59

m * LIEGE ¥ UCLouvain
G it Post-Scriptum

e To download Gmsh: https://gmsh.info

o For references, see https://gmsh.info/#References

e For fun, go to the
e Google Play Store (if you are on Android)
e Apple AppStore (if you are on iOS)
and download the ONELAB app: it contains a full-featured
version of Gmsh + the finite element solver GetDP

. so you can impress your friends by solving finite element .
models on your smartphone!

60

https://gmsh.info
https://gmsh.info/#References
https://play.google.com/store/apps/details?id=org.geuz.onelab
https://itunes.apple.com/us/app/onelab/id845930897

	What is Gmsh?
	Geometry module
	Mesh module
	Solver module
	Post-processing module
	Recent developments: last 5 years
	Conclusions and perspectives

