Local grid refinement in OPM

Antonella Ritorto

Dr. Blatt HPC-Simulation-Software & Services antonella.ritorto@opm-op.com

DUNE User Meeting 2023

September 18-19 Dresden

Who are we?

Collaborative software developers

What do we do?

Modeling and simulation of porous media processes

- CO₂ sequestration
- Oil recovery

What do we provide?

Open-source software and open data sets Tools to create/customize solvers and simulators:

OPM Flow

Reservoir simulator for three-phase black-oil problems

Upscaling

Flow-based upscaling of (relative) permeability and capillary curves

@**@@@**@**@**@

ResInsight

Visualization tool for reservoir simulation

Modules

opm-common

- build system
- Eclipse deck parser, Eclipse binary format $\ensuremath{\mathsf{I}}\xspace/\ensuremath{\mathsf{O}}\xspace$

opm-grid

opm-simulators

- OPM Flow
- automatic differentiation library
- solvers: IMPES, 2-phase incompressible transport, ...

(*) from DUNE-The distributed and Unified Numerics Environment, Oliver Sander.

Corner-point Grid

opm-grid

DUNE module supporting

- CpGrid \rightarrow corner-point grid
- ▶ PolyhedralGrid → fully unstructured grid

CpGrid defined by vertical pillars and layers (might vanish/collapse!)

RUNSPEC		
DIMENS		
1 1 5 /		
GRID		
COORD		
Vertical pillar		
0 0 0		
001		
Vertical pillar		
100		
101		
Vertical piller		
010		
011		
Vertical pillar		
1 1 0		
111/		
ZCORN depth of each corner point		
4*0 top layer 1		
8*1 bottom layer 1		
8*2 top layer 2		
8*3 bottom layer 2		
8*4 top layer 3		
4*5 bottom layer 3 /		
ACTNUM		
5*1 all 5 cells active /		
PORO		
5*0.15		

opm-grid

DUNE module supporting

- ► CpGrid → corner-point grid
- ▶ PolyhedralGrid → fully unstructured grid

CpGrid defined by vertical pillars and layers (might vanish/collapse!)

```
--- Vertical Pillar
000 001
--- Vertical Pillar
100 100
--- Vertical Pillar
--- Vertical Pillar
110 110
   --- top layer
    --- bottom layer
4*1
ACTNUM
```


(Regular) Cartesian grid example - SPE1

Reservoir model from the **1st S**ociety of **P**etroleum **E**ngineers Comparative Solution Project

Designed for bench marking 3D black-oil simulators

- Three-layer permeability structure
- Injection well
- Production well

The reservoir is filled in with **oil** and **water Gas** is injected thought the injection well

OPM Flow manual, David Baxendale

(Irregular) Corner-point Grid example - Norne oil field

Local Grid Refinement in OPM

Corner point grid

It provides mappings from cells to the underlying $\ensuremath{\textbf{Cartesian Index}}$

Each cell can be ACTIVE or INACTIVE

Dune::CpGrid::createCartesian method

- ▶ dims ~→ number of cells in each Cartesian direction
- ▶ cellsize ~→ size of each cell in each direction
- shift →→ origin of the grid
 →→ corner of the cell with Cartesian Index (0,0,0)

Local Grid Refinement

Local Grid Refinement in OPM

Cooperation between

SINTEF

τνο

Dr. Blatt -HPC-Simulation-Software & Services

Local Grid Refinement in OPM

LGR project is a cooperation between

TNO

Bård Skaflestad SINTEF Dr. Blatt-HPC-Simulation-Software & Services

How it was one year ago

LGR ACTIVITIES

) Literature and simulators reviewed: Eclipse, CMG, MRST, papers...

-) Tests cases created and pushed to opm-tests
- Designing plan for code implementation to support the following aspects of LGR functionality (in cooperation with SINTEF and OPM-OP AS)
-) Requires code changes in several repositories: opm-common, opm-grid and opm-simulators

) Challenges:

-) Allow wells to cross over grids (means solving the all
- > Output and restart of models with LGR
- > Extensive code refactoring in opm-grid needed
-) Changes to opm-grid:
- Store multiple level grids in CpGrid
- Identify Mother-Child relationships
- > Store/Compute/Iterate over leaf grid view

Cíntia Machado et al. (TNO) - Recent OPM Devel-

Antonella Ritorto Local Grid Refinement in OPM

Level 0

Level 1 / LGR

Leaf grid view

What has been done in opm-grid

- Create and store multiple level grids in CpGrid
- Identify Parent-Child relationships
- Store/compute/iterate over leaf grid view

(*) from DUNE-The distributed and Unified Numerics Environment, Oliver Sander.

What has been done in opm-grid

- Create and store multiple level grids in CpGrid
- Identify Parent-Child relationships
- Store/compute/iterate over leaf grid view

 (\star) from DUNE-The distributed and Unified Numerics Environment, Oliver Sander.

How?

What has been done in opm-grid - How?

Using DUNE's adaptive grid interface(*)

- Hierarchical Grids (refinement; geometrical and topological features)
- Entity::father(), hasFather(), geometryInFather(), ...
- Hierarchical Grids and Leaf Grid View (iterators, ...)

Hierarchical grids and grid views in OPM - Now!

(*) from DUNE-The distributed and Unified Numerics Environment, Oliver Sander.

Technical (temporary!) limitations

1. Corner point / Cartesian grid \rightarrow cells with 8 corners

Non (yet) supported cells:

2. All cells are ACTIVE

Local grid refinement in OPM

Entity::geometryInFather()

(*) from DUNE-The distributed and Unified Numerics Environment, Oliver Sander.

Entity::hasFather(), father()

Grid elements with descendants

(*) from DUNE-The distributed and Unified Numerics Environment, Oliver Sander.

When do LGRs appear in the simulation?

ΟΡΜ

LGRs in (oil) simulation

- are defined at the **beginning of the simulation**

- can be switched on and off during the simulation

DUNE

Decide which cells should be - refined

- coarsened during simulation

After that, simulation continues

Refine/coarsen takes place again

One year ago	Now!	What's next?
• Level 0 = Leaf Grid View	• Multiple level grids	• Mark subset of leaf grid elements
	 Parent-Child relations 	- to refine
• Incomplete		- to coarsen
Geometry::refine	• Update Leaf Grid View	
single cell		• Call
		- adapt()
		- preAdapt()
		<pre>- postAdapt()</pre>

Further...

- Remove *temporary* constrains:
 - allow INACTIVE elements in the LGRs
 - allow elements with fewer corners (8 currently)

Thank you for your attention!

Dr. Blatt HPC-Simulation-Software & Services

Check our GitHub repository OPM/opm-grid!