A General Approach to Implementing Virtual Element Methods

Andreas Dedner

Mathematics Institute, University of Warwick

with Alice Hodson (now University of Prague)

September 19, 2023

Overview of dune-vem

Virtual elements

- General construction of spaces for, e.g., elliptic, forth order problems, H (div), H (curl), divergence free etc
- No restriction on the element shapes

Currently available in dune-vem

- wide range of spaces for second order problems
- wide range of spaces for forth order problems
- bounding box discontinuous Galerkin spaces
- curl-free space
- divergence compatible spaces (piecewise constant divergence)
- $H($ div) and $H(c u r l)$ conforming spaces (in progress)
arbitrary order for general elements in 2D.

Starting point

Given set of local dofs Λ_{E} on element E VEM space: $\left(E, ?, \Lambda_{E}\right)$ instead of FEM space: $\left(E, V_{E}, \Lambda_{E}\right)$ Problem with FEM:
finding a suitable basis M_{E} of the space V_{E} (pre-basis in dune-localfunctions implementation).
Problem with VEM:
we don't know too much about V_{E} - it's virtual...

[^0]
Starting point

Given set of local dofs Λ_{E} on element E
VEM space: $\left(E, ?, \Lambda_{E}\right)$ instead of FEM space: $\left(E, V_{E}, \Lambda_{E}\right)$
Problem with FEM:
finding a suitable basis M_{E} of the space V_{E} (pre-basis in dune-localfunctions implementation).
Problem with VEM:
we don't know too much about V_{E} - it's virtual...
VEM idea:
define projections into a simple polynomial space(s) $P\left(P^{\star}, P^{\sharp}\right)$:
$v_{E} \approx \mathcal{G}^{E, 0} v_{E} \in P, \quad \nabla v_{E} \approx \mathcal{G}^{E, \nabla} v_{E} \in P^{\star}, \quad \nabla^{2} v_{E} \approx \mathcal{G}^{E, H} v_{E} \in P^{\sharp}$,
Our approach: ${ }^{1}$
$\mathcal{G}^{E, 0} v_{E}$ depends on Λ_{E} (constraint least squares problem).
Other projections are generic but in general

$$
\mathcal{G}^{E, \nabla} v_{E} \neq \nabla \mathcal{G}^{E, 0} v_{E}
$$

Advantage: no special projection for e.g. $\operatorname{div} v_{E}$, use trace $\mathcal{G}^{E, \nabla} v_{E}$.
${ }^{1}$ Dedner and Hodson, Implementing general virtual element spaces.

General set of dofs for 2nd/4th order PDE

Local VEM space defined by moments tuple

$$
(\underbrace{\left(\delta_{p 0}\right)}_{\text {vertex dofs }}, \underbrace{\left(\delta_{e 0}\right)}_{\text {edge dofs }}, \underbrace{\delta_{i}}_{\text {inner dofs }})
$$

with $\delta_{p 0}, \quad \in\{-1,0\}$ and $\delta_{e 0}, \quad \delta_{i} \leq I$ encoding set of dofs For $2^{\text {nd }}$ order PDEs:

$$
\begin{array}{rlrl}
L^{i}:=\left\{\lambda_{m_{\beta}}^{E}: v^{E} \mapsto \frac{1}{|E|} \int_{E} v^{E} m_{\beta}\right\}, & & \left(m_{\beta}\right)_{\beta} \text { basis of } \mathbb{P}_{\delta_{i}}(E) \\
L^{e, 0}:=\left\{\lambda_{\psi_{\beta}}^{e, 0}: v^{E} \mapsto \frac{1}{|e|} \int_{e} v^{E} \psi_{\beta}\right\}, & & e \in E^{1}, & \\
\left(\psi_{\beta}\right)_{\beta} \text { basis of } \mathbb{P}_{\delta_{e 0}}(e) \\
L^{p, 0}:=\left\{\lambda^{p, 0}: v^{E} \mapsto v^{E}(p)\right\}, & & p \in E^{0}, & \\
\text { if } \delta_{p 0}=0
\end{array}
$$

General set of dofs for 2nd/4th order PDE

Local VEM space defined by moments tuple

$$
(\underbrace{\left(\delta_{p 0}, \delta_{p 1}\right)}_{\text {vertex dofs }}, \underbrace{\left(\delta_{e 0}, \delta_{e 1}\right)}_{\text {edge dofs }}, \underbrace{\delta_{i}}_{\text {inner dofs }})
$$

with $\delta_{p 0}, \delta_{p 1} \in\{-1,0\}$ and $\delta_{e 0}, \delta_{e 1}, \delta_{i} \leq I$ encoding set of dofs For $2^{\text {nd }}$ order PDEs:

$$
\begin{array}{rlrl}
L^{i}:=\left\{\lambda_{m_{\beta}}^{E}: v^{E} \mapsto \frac{1}{|E|} \int_{E} v^{E} m_{\beta}\right\}, & & \left(m_{\beta}\right)_{\beta} \text { basis of } \mathbb{P}_{\delta_{i}}(E) \\
L^{e, 0}:=\left\{\lambda_{\psi_{\beta}}^{e, 0}: v^{E} \mapsto \frac{1}{|e|} \int_{e} v^{E} \psi_{\beta}\right\}, & & e \in E^{1}, & \\
\left(\psi_{\beta}\right)_{\beta} \text { basis of } \mathbb{P}_{\delta_{e 0}}(e) \\
L^{p, 0}:=\left\{\lambda^{p, 0}: v^{E} \mapsto v^{E}(p)\right\}, & & p \in E^{0}, & \\
\text { if } \delta_{p 0}=0
\end{array}
$$

additonal for $4^{\text {th }}$ order PDEs: add $\delta_{p 1}, \delta_{e 1}$
$L^{e, 1}:=\left\{\lambda_{\psi_{\beta}}^{e, 1}: v^{E} \mapsto \int_{e} \nabla v^{E} \cdot n_{e} \psi_{\beta}\right\} \quad e \in E^{1}, \quad\left(\psi_{\beta}\right)_{\beta}$ basis of $\mathbb{P}_{\delta_{e 1}}(e)$
$L^{p, 1}:=\left\{\lambda^{p, 1}: v^{E} \mapsto \nabla v^{E}(p)\right\} \quad p \in E^{0}, \quad$ if $\delta_{p 1}=0$

General set of dofs: examples with $/=4$

Dof tuple:

$$
(\underbrace{\left(\delta_{e 0}\right)}_{\begin{array}{c}
\text { vertex dofs } \\
\delta_{p 0}, \delta_{p 1} \in\{-1,0\}, \delta_{e 0},
\end{array}, \underbrace{\left(\delta_{p 0}\right.}_{\text {edge dofs }}, \delta_{i} \leq 1}, \underbrace{\delta_{i}}_{\text {inner dofs }})
$$

```
# non-conforming C^1 space
2 from dune.vem import vemSpace
spc = vemSpace(grid, order=4,
    testSpaces=[[0,-1],[2,2],0])
```


conforming H^{1}
$((0,-1),(2,-1), 2)$

Serendipity conforming H^{1} $((0,-1),(2,-1), 1)$

General set of dofs: examples with $I=4$

Dof tuple:

$$
\begin{aligned}
& (\underbrace{\substack{\delta_{i} \\
\delta_{e 1}, \delta_{i} \leq 1}}_{\begin{array}{c}
\text { vertex dofs } \\
\left.\delta_{p 0}, \delta_{p 1}, \delta_{p 1}\right)
\end{array}, \underbrace{\left(\delta_{e 0}, \delta_{e 1}\right)}_{\text {edge dofs }}, \underbrace{\delta_{i}}_{\text {inner dofs }})})
\end{aligned}
$$

```
# # non-conforming C^1 space
from dune.vem import vemSpace
spc = vemSpace(grid, order=4,
    testSpaces=[[0,-1],[2, 2],0])
```

non conforming H^{1}
$((-1,-1),(3,-1), 2)$
conforming H^{1}
$((0,-1),(2,-1), 2)$

Serendipity conforming H^{1} $((0,-1),(2,-1), 1)$

 conforming $H^{2} \quad$ non conforming $H^{2} \quad C^{0}$-conf, $H^{2}-\mathrm{nc}\left(4^{\text {th }}\right.$ order perturbation) $((0,0),(0,1), 0) \quad((0,-1),(1,2), 0) \quad((0,-1),(2,2), 0)$

Implementation details ${ }^{1}$

1. Grid View T_{h} : consisting of elements E
2. Local Mapper μ_{E} : local dofs to global dofs
3. Local Nodal Basis B_{E} : evaluate values, jacobians, hessians, ...
4. Local Operators L_{E} : assemble local contributions
[^1]
Implementation details ${ }^{1}$

1. Grid View T_{h} : consisting of elements E

- Any (dune) grid
- Agglomerated triangular grid: a triangle T knows polygon $E \supset T$.
- Alternative: use dune-polygongrid (not yet added)

[^2]
Implementation details ${ }^{1}$

1. Grid View T_{h} : consisting of elements E

- Any (dune) grid
- Agglomerated triangular grid: a triangle T knows polygon $E \supset T$.
- Alternative: use dune-polygongrid (not yet added)

2. Local Mapper μ_{E} : local dofs to global dofs

- Based on local key approach (easy e.g. for dof tuple)
- In agglomerated approach $\mu_{T}=\mu_{E}$ for all $T \subset E$.

[^3]
Implementation details ${ }^{1}$

1. Grid View T_{h} : consisting of elements E

- Any (dune) grid
- Agglomerated triangular grid: a triangle T knows polygon $E \supset T$.
- Alternative: use dune-polygongrid (not yet added)

2. Local Mapper μ_{E} : local dofs to global dofs

- Based on local key approach (easy e.g. for dof tuple)
- In agglomerated approach $\mu_{T}=\mu_{E}$ for all $T \subset E$.

3. Local Nodal Basis B_{E} : evaluate values, jacobians, hessians, ... In FE can start with any basis M_{E} of local space V_{E}. Use dofs to construct basis transform matrix A_{E} so that

$$
\operatorname{eval}(E, x)=A_{E} M_{E}(x), \quad \operatorname{jac}(E, x)=A_{E} \nabla M_{E}(x)
$$

This does not work for VEM.

[^4]
Implementation details ${ }^{1}$

1. Grid View T_{h} : consisting of elements E

- Any (dune) grid
- Agglomerated triangular grid: a triangle T knows polygon $E \supset T$.
- Alternative: use dune-polygongrid (not yet added)

2. Local Mapper μ_{E} : local dofs to global dofs

- Based on local key approach (easy e.g. for dof tuple)
- In agglomerated approach $\mu_{T}=\mu_{E}$ for all $T \subset E$.

3. Local Nodal Basis B_{E} : evaluate values, jacobians, hessians, ... In FE can start with any basis M_{E} of local space V_{E}. Use dofs to construct basis transform matrix A_{E} so that

$$
\operatorname{eval}(\mathrm{E}, \mathrm{x})=A_{E} M_{E}(x), \quad \operatorname{jac}(\mathrm{E}, \mathrm{x})=A_{E} \nabla M_{E}(x)
$$

This does not work for VEM.
Construct $A_{E}^{0}, A_{E}^{1}, A_{E}^{2}$
$\operatorname{eval}(\mathrm{E}, \mathrm{x})=\mathcal{G}^{E, 0} B_{E}=A_{E}^{0} M(x), \quad \operatorname{jac}(\mathrm{E}, \mathrm{x})=\mathcal{G}^{E, \nabla} B_{E}=A_{E}^{1} M(x)$. Instead of $\nabla^{p} A_{E} M_{E}$ implement function for $A_{E}^{p} M$ (same interface). Currently: basis in physical space.

[^5]
Implementation details ${ }^{1}$

1. Grid View T_{h} : consisting of elements E

- Any (dune) grid
- Agglomerated triangular grid: a triangle T knows polygon $E \supset T$.
- Alternative: use dune-polygongrid (not yet added)

2. Local Mapper μ_{E} : local dofs to global dofs

- Based on local key approach (easy e.g. for dof tuple)
- In agglomerated approach $\mu_{T}=\mu_{E}$ for all $T \subset E$.

3. Local Nodal Basis B_{E} : evaluate values, jacobians, hessians, ... Construct $A_{E}^{0}, A_{E}^{1}, A_{E}^{2}$
$\operatorname{eval}(\mathrm{E}, \mathrm{x})=\mathcal{G}^{E, 0} B_{E}=A_{E}^{0} M(x), \quad \operatorname{jac}(\mathrm{E}, \mathrm{x})=\mathcal{G}^{E, \nabla} B_{E}=A_{E}^{1} M(x)$.
Instead of $\nabla^{p} A_{E} M_{E}$ implement function for $A_{E}^{p} M$ (same interface).
Currently: basis in physical space.
4. Local Operators L_{E} : assemble local contributions No changes to FEM code or code generation.

Only need eval (E, x), jac (E, x), ... at quadrature (currently given by agglomerated triangles).
${ }^{1}$ Dedner and Hodson, Implementing general virtual element spaces.

Cahn-Hilliard Equation

Backward Euler in time with time step τ

$$
\int_{\Omega} u^{n}+\tau \varepsilon^{2} D^{2} u^{n}: D^{2} v+\tau \nabla \Psi^{\prime}\left(u^{n}\right) \cdot \nabla v=\int_{\Omega} u^{n-1} v
$$

with $\nabla u \cdot n=0, \nabla\left(\varepsilon^{2} \Delta u-\Psi^{\prime}(u)\right) \cdot n=0$ on $\partial \Omega$ and $\Psi(u)=\left(u^{2}-1\right)^{2}$

Extension to some vector valued spaces

Example curl free space: used for mixed formulations of Laplace problem requiring space for $\sigma=\nabla u$ so $\operatorname{curl} \sigma=0$.
Other application: Eigenvalue problem for $\int_{\Omega} \operatorname{div} u \operatorname{div} v$
Define subset of $H($ div $)$ so that on each element E

- $\operatorname{div} u^{E} \in \mathbb{P}_{l}(E)$
- $\operatorname{curl} u^{E}=0$
- in addition $u^{E} \Gamma_{e} \cdot n \in \mathbb{P}_{l}(e)$ on each edge.

Dofs: similar to Raviart-Thomas FEM spaces (but fewer)

$$
\int_{E} u^{E} \cdot \nabla m, m \in \mathbb{P}_{l}(E) \backslash \mathbb{P}_{0}(E), \quad \int_{e} u^{E} \cdot n q, q \in \mathbb{P}_{l}(e)
$$

Navier Stokes for (u, p)

$p \in \mathrm{DG}_{0}$ and u in compatible space i.e., $\operatorname{div} u \in \mathrm{DG}_{0}$ (order $I \geq 2$).
Top two rows: VEM velocity and pressure $I=2$ (left) and $I=4$ (right).

Lower row: Taylor-Hood of order $I=2,4$ for velocity on same grid. Velocity dofs:
$\int_{E} u^{E} \cdot m^{\perp}, m^{\perp} \in x^{\perp} \mathbb{P}_{I-3}(E), \quad \int_{e} u^{E} \cdot n q, q \in \mathbb{P}_{I-2}(e), \quad u^{E}(v)$
Spaces useful for porous media (work in progress...)

Commercial break...

Now to something completely different

VTK reader (pickling support)

Recently we added pickling (backup/restore) to dune-common:

```
grid = dune.grid.structuredGrid( [-2,-2,-2],[2,2,2],[4,4,4] )
space = dune.fem.space.lagrange(grid, order=4)
df = space.interpolate(..., name="df")
with open(fileName+".dbf","wb") as f:
    dune.common.pickle.dump([df],f)
```

- uses Dune: : BackupRestoreFacility for grids
- writes dofs of discrete functions (few lines of extra binding code)
- dump full Python object hierarchy (standard pickle)
- Extra: write source code for required generate modules Nice: can load onto any machine (with a dune installation).

VTK reader (pickling support)

Using paraview

- Class derived from VTKPythonAlgorithmBase
- Exporting env variable export PV_PLUGIN_PATH=...
- Can p- or h-refine the grid in paraview

Nice alternative (also for teaching):
pyvista e.g. in a notebook https://pyvista.org

VTK reader (pickling support)

Using paraview

- Class derived from VTKPythonAlgorithmBase
- Exporting env variable export PV_PLUGIN_PATH=...
- Can p- or h-refine the grid in paraview
- Can transform functions (using ufl) e.g. compute the error

```
def error(gv,t,df,dfs):
    ldf = dfs[0].localFunction()
    @gridFunction(gv, name="error",order=6)
    def _error(element,xLocal):
        ldf.bind(element)
        xGlobal = element.geometry.toGlobal(xLocal)
        exact = numpy.sin(numpy.pi*x.two_norm2)
        return abs( ldf(x) - exact )
    return [__error,*dfs]
```

Nice alternative (also for teaching):
pyvista e.g. in a notebook https://pyvista.org

Commercial break...

And now back to the main program...

Summary and Outlook

Summary

- General approach for constructing/implementing VEM spaces
- VEM spaces available in Dune with Python bindings (with UFL)
- Many versions for nonlinear second and forth order problems
- Extension to compatible VEM spaces (deRham complex)
- ... divergence/curl free spaces

Summary and Outlook

Summary

- General approach for constructing/implementing VEM spaces
- VEM spaces available in Dune with Python bindings (with UFL)
- Many versions for nonlinear second and forth order problems
- Extension to compatible VEM spaces (deRham complex)
- ... divergence/curl free spaces

Work in Progress

- Looking at fluid flow problems, e.g., CH-NS
- Looking at Eigenvalue problems (with L Alzaben, D. Boffi)
- Looking at isoparametric VEM (with A. Cangiani, H. Wells)

Summary and Outlook

Summary

- General approach for constructing/implementing VEM spaces
- VEM spaces available in Dune with Python bindings (with UFL)
- Many versions for nonlinear second and forth order problems
- Extension to compatible VEM spaces (deRham complex)
- ... divergence/curl free spaces

Work in Progress

- Looking at fluid flow problems, e.g., CH-NS
- Looking at Eigenvalue problems (with L Alzaben, D. Boffi)
- Looking at isoparametric VEM (with A. Cangiani, H. Wells)

Open

- 3D: concepts should carry over easily but
- ... implementation needs to be done
- Efficiency: so far code is mostly proof of concept
- ... some (threading/mpi) parallelization available
- ... want to add reference element caching where possible
- Adaptivity: refine polygons and prolongation/restriction missing

References

A. Dedner and A. Hodson. Implementing general virtual element spaces. 2022. arXiv: 2208.08978 [math.NA].
R- . "Robust nonconforming virtual element methods for general fourth-order problems with varying coefficients". In: IMA Journal of Numerical Analysis (Mar. 2021). drab003. eprint:
https://academic.oup.com/imajna/advance-article-
pdf/doi/10.1093/imanum/drab003/36627651/drab003.pdf.

[^0]: ${ }^{1}$ Dedner and Hodson, Implementing general virtual element spaces.

[^1]: ${ }^{1}$ Dedner and Hodson, Implementing general virtual element spaces.

[^2]: ${ }^{1}$ Dedner and Hodson, Implementing general virtual element spaces.

[^3]: ${ }^{1}$ Dedner and Hodson, Implementing general virtual element spaces.

[^4]: ${ }^{1}$ Dedner and Hodson, Implementing general virtual element spaces.

[^5]: ${ }^{1}$ Dedner and Hodson, Implementing general virtual element spaces.

