
A General Approach to Implementing
Virtual Element Methods

Andreas Dedner
Mathematics Institute, University of Warwick

with Alice Hodson (now University of Prague)

September 19, 2023

Overview of dune-vem

Virtual elements
I General construction of spaces for, e.g., elliptic, forth order

problems, H(div),H(curl), divergence free etc
I No restriction on the element shapes

Currently available in dune-vem
I wide range of spaces for second order problems
I wide range of spaces for forth order problems
I bounding box discontinuous Galerkin spaces
I curl-free space
I divergence compatible spaces (piecewise constant divergence)
I H(div) and H(curl) conforming spaces (in progress)

arbitrary order for general elements in 2D.

Starting point
Given set of local dofs ΛE on element E
VEM space: (E , ?,ΛE) instead of FEM space: (E ,VE ,ΛE)

Problem with FEM:
finding a suitable basis ME of the space VE (pre-basis in
dune-localfunctions implementation).
Problem with VEM:
we don’t know too much about VE - it’s virtual...

VEM idea:
define projections into a simple polynomial space(s) P (P?,P]):

vE ≈ GE,0vE ∈ P , ∇vE ≈ GE,∇vE ∈ P? , ∇2vE ≈ GE,HvE ∈ P] ,

Our approach:1

GE,0vE depends on ΛE (constraint least squares problem).
Other projections are generic but in general

GE,∇vE 6= ∇GE,0vE

Advantage: no special projection for e.g. divvE , use traceGE,∇vE .

1Dedner and Hodson, Implementing general virtual element spaces.

Starting point
Given set of local dofs ΛE on element E
VEM space: (E , ?,ΛE) instead of FEM space: (E ,VE ,ΛE)

Problem with FEM:
finding a suitable basis ME of the space VE (pre-basis in
dune-localfunctions implementation).
Problem with VEM:
we don’t know too much about VE - it’s virtual...
VEM idea:
define projections into a simple polynomial space(s) P (P?,P]):

vE ≈ GE,0vE ∈ P , ∇vE ≈ GE,∇vE ∈ P? , ∇2vE ≈ GE,HvE ∈ P] ,

Our approach:1

GE,0vE depends on ΛE (constraint least squares problem).
Other projections are generic but in general

GE,∇vE 6= ∇GE,0vE

Advantage: no special projection for e.g. divvE , use traceGE,∇vE .
1Dedner and Hodson, Implementing general virtual element spaces.

General set of dofs for 2nd/4th order PDE

Local VEM space defined by moments tuple(
(δp0

, δp1

)︸ ︷︷ ︸
vertex dofs

, (δe0

, δe1

)︸ ︷︷ ︸
edge dofs

, δi︸︷︷︸
inner dofs

)
with δp0,

δp1

∈ {−1,0} and δe0,

δe1,

δi ≤ l encoding set of dofs
For 2nd order PDEs:

Li := {λE
mβ

: vE 7→ 1
|E |

∫
E

vEmβ} , (mβ)β basis of Pδi (E)

Le,0 := {λe,0
ψβ

: vE 7→ 1
|e|

∫
e

vEψβ} , e ∈ E1 , (ψβ)β basis of Pδe0 (e)

Lp,0 := {λp,0 : vE 7→ vE (p)} , p ∈ E0 , if δp0 = 0

additonal for 4th order PDEs: add δp1, δe1

Le,1 := {λe,1
ψβ

: vE 7→
∫

e
∇vE · neψβ} e ∈ E1 , (ψβ)β basis of Pδe1 (e)

Lp,1 := {λp,1 : vE 7→ ∇vE (p)} p ∈ E0 , if δp1 = 0

General set of dofs for 2nd/4th order PDE

Local VEM space defined by moments tuple(
(δp0, δp1)︸ ︷︷ ︸
vertex dofs

, (δe0, δe1)︸ ︷︷ ︸
edge dofs

, δi︸︷︷︸
inner dofs

)
with δp0, δp1 ∈ {−1,0} and δe0, δe1, δi ≤ l encoding set of dofs
For 2nd order PDEs:

Li := {λE
mβ

: vE 7→ 1
|E |

∫
E

vEmβ} , (mβ)β basis of Pδi (E)

Le,0 := {λe,0
ψβ

: vE 7→ 1
|e|

∫
e

vEψβ} , e ∈ E1 , (ψβ)β basis of Pδe0 (e)

Lp,0 := {λp,0 : vE 7→ vE (p)} , p ∈ E0 , if δp0 = 0

additonal for 4th order PDEs: add δp1, δe1

Le,1 := {λe,1
ψβ

: vE 7→
∫

e
∇vE · neψβ} e ∈ E1 , (ψβ)β basis of Pδe1 (e)

Lp,1 := {λp,1 : vE 7→ ∇vE (p)} p ∈ E0 , if δp1 = 0

General set of dofs: examples with l = 4
Dof tuple:(

(δp0

, δp1

)︸ ︷︷ ︸
vertex dofs

, (δe0

, δe1

)︸ ︷︷ ︸
edge dofs

, δi︸︷︷︸
inner dofs

)
δp0, δp1 ∈ {−1, 0}, δe0, δe1, δi ≤ l

1 # non-conforming C^1 space
2 from dune.vem import vemSpace
3 spc = vemSpace(grid, order=4,
4 testSpaces=[[0,-1],[2,2],0])

non conforming H1 conforming H1 Serendipity conforming H1

((−1,−1), (3,−1), 2) ((0,−1), (2,−1), 2) ((0,−1), (2,−1), 1)

vertices
edges
element

Moments on derivatives
at vertices

moments
normal de

conforming H2 non conforming H2 C0-conf, H2-nc (4th order perturbation)
((0, 0), (0, 1), 0) ((0,−1), (1, 2), 0) ((0,−1), (2, 2), 0)

General set of dofs: examples with l = 4
Dof tuple:(

(δp0, δp1)︸ ︷︷ ︸
vertex dofs

, (δe0, δe1)︸ ︷︷ ︸
edge dofs

, δi︸︷︷︸
inner dofs

)
δp0, δp1 ∈ {−1, 0}, δe0, δe1, δi ≤ l

1 # non-conforming C^1 space
2 from dune.vem import vemSpace
3 spc = vemSpace(grid, order=4,
4 testSpaces=[[0,-1],[2,2],0])

non conforming H1 conforming H1 Serendipity conforming H1

((−1,−1), (3,−1), 2) ((0,−1), (2,−1), 2) ((0,−1), (2,−1), 1)

vertices
edges
element

Moments on derivatives
at vertices

moments
normal de

conforming H2 non conforming H2 C0-conf, H2-nc (4th order perturbation)
((0, 0), (0, 1), 0) ((0,−1), (1, 2), 0) ((0,−1), (2, 2), 0)

Implementation details1

1. Grid View Th: consisting of elements E
2. Local Mapper µE : local dofs to global dofs
3. Local Nodal Basis BE : evaluate values, jacobians, hessians, ...
4. Local Operators LE : assemble local contributions

1Dedner and Hodson, Implementing general virtual element spaces.

Implementation details1

1. Grid View Th: consisting of elements E
I Any (dune) grid
I Agglomerated triangular grid: a triangle T knows polygon E ⊃ T .
I Alternative: use dune-polygongrid (not yet added)

2. Local Mapper µE : local dofs to global dofs
3. Local Nodal Basis BE : evaluate values, jacobians, hessians, ...
4. Local Operators LE : assemble local contributions

1Dedner and Hodson, Implementing general virtual element spaces.

Implementation details1

1. Grid View Th: consisting of elements E
I Any (dune) grid
I Agglomerated triangular grid: a triangle T knows polygon E ⊃ T .
I Alternative: use dune-polygongrid (not yet added)

2. Local Mapper µE : local dofs to global dofs
I Based on local key approach (easy e.g. for dof tuple)
I In agglomerated approach µT = µE for all T ⊂ E .

3. Local Nodal Basis BE : evaluate values, jacobians, hessians, ...
4. Local Operators LE : assemble local contributions

1Dedner and Hodson, Implementing general virtual element spaces.

Implementation details1

1. Grid View Th: consisting of elements E
I Any (dune) grid
I Agglomerated triangular grid: a triangle T knows polygon E ⊃ T .
I Alternative: use dune-polygongrid (not yet added)

2. Local Mapper µE : local dofs to global dofs
I Based on local key approach (easy e.g. for dof tuple)
I In agglomerated approach µT = µE for all T ⊂ E .

3. Local Nodal Basis BE : evaluate values, jacobians, hessians, ...
In FE can start with any basis ME of local space VE .
Use dofs to construct basis transform matrix AE so that

eval(E,x) = AEME (x) , jac(E,x) = AE∇ME (x) .

This does not work for VEM.

Construct A0
E ,A

1
E ,A

2
E

eval(E,x) = GE,0BE = A0
EM(x) , jac(E,x) = GE,∇BE = A1

EM(x) .

Instead of ∇pAEME implement function for Ap
EM (same interface).

Currently: basis in physical space.
4. Local Operators LE : assemble local contributions

1Dedner and Hodson, Implementing general virtual element spaces.

Implementation details1

1. Grid View Th: consisting of elements E
I Any (dune) grid
I Agglomerated triangular grid: a triangle T knows polygon E ⊃ T .
I Alternative: use dune-polygongrid (not yet added)

2. Local Mapper µE : local dofs to global dofs
I Based on local key approach (easy e.g. for dof tuple)
I In agglomerated approach µT = µE for all T ⊂ E .

3. Local Nodal Basis BE : evaluate values, jacobians, hessians, ...
In FE can start with any basis ME of local space VE .
Use dofs to construct basis transform matrix AE so that

eval(E,x) = AEME (x) , jac(E,x) = AE∇ME (x) .

This does not work for VEM.
Construct A0

E ,A
1
E ,A

2
E

eval(E,x) = GE,0BE = A0
EM(x) , jac(E,x) = GE,∇BE = A1

EM(x) .

Instead of ∇pAEME implement function for Ap
EM (same interface).

Currently: basis in physical space.

4. Local Operators LE : assemble local contributions

1Dedner and Hodson, Implementing general virtual element spaces.

Implementation details1

1. Grid View Th: consisting of elements E
I Any (dune) grid
I Agglomerated triangular grid: a triangle T knows polygon E ⊃ T .
I Alternative: use dune-polygongrid (not yet added)

2. Local Mapper µE : local dofs to global dofs
I Based on local key approach (easy e.g. for dof tuple)
I In agglomerated approach µT = µE for all T ⊂ E .

3. Local Nodal Basis BE : evaluate values, jacobians, hessians, ...
Construct A0

E ,A
1
E ,A

2
E

eval(E,x) = GE,0BE = A0
EM(x) , jac(E,x) = GE,∇BE = A1

EM(x) .

Instead of ∇pAEME implement function for Ap
EM (same interface).

Currently: basis in physical space.
4. Local Operators LE : assemble local contributions

No changes to FEM code or code generation.

Only need eval(E,x), jac(E,x), ... at quadrature
(currently given by agglomerated triangles).

1Dedner and Hodson, Implementing general virtual element spaces.

Cahn-Hilliard Equation
Backward Euler in time with time step τ∫

Ω

un + τε2D2un : D2v + τ∇Ψ′(un) · ∇v =

∫
Ω

un−1v

with ∇u · n = 0,∇(ε24u −Ψ′(u)) · n = 0 on ∂Ω and Ψ(u) = (u2 − 1)2

final state

Extension to some vector valued spaces

Example curl free space: used for mixed formulations of Laplace
problem requiring space for σ = ∇u so curlσ = 0.
Other application: Eigenvalue problem for

∫
Ω

divu divv

Define subset of H(div) so that on each element E
I divuE ∈ Pl (E)

I curluE = 0
I in addition uE�e · n ∈ Pl (e) on each edge.

Dofs: similar to Raviart-Thomas FEM spaces (but fewer)∫
E

uE · ∇m , m ∈ Pl (E) \ P0(E) ,

∫
e

uE · nq , q ∈ Pl (e)

Navier Stokes for (u,p)
p ∈ DG0 and u in compatible space i.e., divu ∈ DG0 (order l ≥ 2).

Top two rows: VEM velocity and pressure l = 2 (left) and l = 4 (right).

Lower row: Taylor-Hood of order l = 2,4 for velocity on same grid.
Velocity dofs:∫

E
uE ·m⊥ , m⊥ ∈ x⊥Pl−3(E) ,

∫
e

uE ·nq , q ∈ Pl−2(e) , uE (v)

Spaces useful for porous media (work in progress...)

Commercial break...

Now to something completely different

VTK reader (pickling support)

Recently we added pickling (backup/restore) to dune-common:
1 grid = dune.grid.structuredGrid([-2,-2,-2],[2,2,2],[4,4,4])
2 space = dune.fem.space.lagrange(grid, order=4)
3 df = space.interpolate(..., name="df")
4 with open(fileName+".dbf","wb") as f:
5 dune.common.pickle.dump([df],f)

I uses Dune::BackupRestoreFacility for grids
I writes dofs of discrete functions (few lines of extra binding code)
I dump full Python object hierarchy (standard pickle)
I Extra: write source code for required generate modules

Nice: can load onto any machine (with a dune installation).

VTK reader (pickling support)

Using paraview
I Class derived from VTKPythonAlgorithmBase

I Exporting env variable export PV_PLUGIN_PATH=...

I Can p- or h-refine the grid in paraview

I Can transform functions (using ufl) e.g. compute the error
1 def error(gv,t,df,dfs):
2 ldf = dfs[0].localFunction()
3 @gridFunction(gv,name="error",order=6)
4 def _error(element,xLocal):
5 ldf.bind(element)
6 xGlobal = element.geometry.toGlobal(xLocal)
7 exact = numpy.sin(numpy.pi*x.two_norm2)
8 return abs(ldf(x) - exact)
9 return [_error,*dfs]

Nice alternative (also for teaching):
pyvista e.g. in a notebook https://pyvista.org

https://pyvista.org

VTK reader (pickling support)

Using paraview
I Class derived from VTKPythonAlgorithmBase

I Exporting env variable export PV_PLUGIN_PATH=...

I Can p- or h-refine the grid in paraview
I Can transform functions (using ufl) e.g. compute the error

1 def error(gv,t,df,dfs):
2 ldf = dfs[0].localFunction()
3 @gridFunction(gv,name="error",order=6)
4 def _error(element,xLocal):
5 ldf.bind(element)
6 xGlobal = element.geometry.toGlobal(xLocal)
7 exact = numpy.sin(numpy.pi*x.two_norm2)
8 return abs(ldf(x) - exact)
9 return [_error,*dfs]

Nice alternative (also for teaching):
pyvista e.g. in a notebook https://pyvista.org

https://pyvista.org

Commercial break...

And now back to the main program...

Summary and Outlook

Summary
I General approach for constructing/implementing VEM spaces
I VEM spaces available in Dune with Python bindings (with UFL)
I Many versions for nonlinear second and forth order problems
I Extension to compatible VEM spaces (deRham complex)
I ... divergence/curl free spaces

Work in Progress
I Looking at fluid flow problems, e.g., CH-NS
I Looking at Eigenvalue problems (with L Alzaben, D. Boffi)
I Looking at isoparametric VEM (with A. Cangiani, H. Wells)

Open
I 3D: concepts should carry over easily but
I ... implementation needs to be done
I Efficiency: so far code is mostly proof of concept
I ... some (threading/mpi) parallelization available
I ... want to add reference element caching where possible
I Adaptivity: refine polygons and prolongation/restriction missing

Summary and Outlook

Summary
I General approach for constructing/implementing VEM spaces
I VEM spaces available in Dune with Python bindings (with UFL)
I Many versions for nonlinear second and forth order problems
I Extension to compatible VEM spaces (deRham complex)
I ... divergence/curl free spaces

Work in Progress
I Looking at fluid flow problems, e.g., CH-NS
I Looking at Eigenvalue problems (with L Alzaben, D. Boffi)
I Looking at isoparametric VEM (with A. Cangiani, H. Wells)

Open
I 3D: concepts should carry over easily but
I ... implementation needs to be done
I Efficiency: so far code is mostly proof of concept
I ... some (threading/mpi) parallelization available
I ... want to add reference element caching where possible
I Adaptivity: refine polygons and prolongation/restriction missing

Summary and Outlook

Summary
I General approach for constructing/implementing VEM spaces
I VEM spaces available in Dune with Python bindings (with UFL)
I Many versions for nonlinear second and forth order problems
I Extension to compatible VEM spaces (deRham complex)
I ... divergence/curl free spaces

Work in Progress
I Looking at fluid flow problems, e.g., CH-NS
I Looking at Eigenvalue problems (with L Alzaben, D. Boffi)
I Looking at isoparametric VEM (with A. Cangiani, H. Wells)

Open
I 3D: concepts should carry over easily but
I ... implementation needs to be done
I Efficiency: so far code is mostly proof of concept
I ... some (threading/mpi) parallelization available
I ... want to add reference element caching where possible
I Adaptivity: refine polygons and prolongation/restriction missing

References

A. Dedner and A. Hodson. Implementing general virtual element spaces. 2022. arXiv: 2208.08978
[math.NA].

— .“Robust nonconforming virtual element methods for general fourth-order problems with varying
coefficients”. In: IMA Journal of Numerical Analysis (Mar. 2021). drab003. eprint:
https://academic.oup.com/imajna/advance-article-
pdf/doi/10.1093/imanum/drab003/36627651/drab003.pdf.

https://arxiv.org/abs/2208.08978
https://arxiv.org/abs/2208.08978
https://academic.oup.com/imajna/advance-article-pdf/doi/10.1093/imanum/drab003/36627651/drab003.pdf
https://academic.oup.com/imajna/advance-article-pdf/doi/10.1093/imanum/drab003/36627651/drab003.pdf

	Vector Valued Spaces
	Outlook
	References

