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Overview of dune-vem

Virtual elements
I General construction of spaces for, e.g., elliptic, forth order

problems, H(div),H(curl), divergence free etc
I No restriction on the element shapes

Currently available in dune-vem
I wide range of spaces for second order problems
I wide range of spaces for forth order problems
I bounding box discontinuous Galerkin spaces
I curl-free space
I divergence compatible spaces (piecewise constant divergence)
I H(div) and H(curl) conforming spaces (in progress)

arbitrary order for general elements in 2D.



Starting point
Given set of local dofs ΛE on element E
VEM space: (E , ?,ΛE ) instead of FEM space: (E ,VE ,ΛE )

Problem with FEM:
finding a suitable basis ME of the space VE (pre-basis in
dune-localfunctions implementation).
Problem with VEM:
we don’t know too much about VE - it’s virtual...

VEM idea:
define projections into a simple polynomial space(s) P (P?,P]):

vE ≈ GE,0vE ∈ P , ∇vE ≈ GE,∇vE ∈ P? , ∇2vE ≈ GE,HvE ∈ P] ,

Our approach:1

GE,0vE depends on ΛE (constraint least squares problem).
Other projections are generic but in general

GE,∇vE 6= ∇GE,0vE

Advantage: no special projection for e.g. divvE , use traceGE,∇vE .
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General set of dofs for 2nd/4th order PDE

Local VEM space defined by moments tuple(
(δp0

, δp1

)︸ ︷︷ ︸
vertex dofs

, (δe0

, δe1

)︸ ︷︷ ︸
edge dofs

, δi︸︷︷︸
inner dofs

)
with δp0,

δp1

∈ {−1,0} and δe0,

δe1,

δi ≤ l encoding set of dofs
For 2nd order PDEs:

Li := {λE
mβ

: vE 7→ 1
|E |

∫
E

vEmβ} , (mβ)β basis of Pδi (E)

Le,0 := {λe,0
ψβ

: vE 7→ 1
|e|

∫
e

vEψβ} , e ∈ E1 , (ψβ)β basis of Pδe0 (e)

Lp,0 := {λp,0 : vE 7→ vE (p)} , p ∈ E0 , if δp0 = 0

additonal for 4th order PDEs: add δp1, δe1

Le,1 := {λe,1
ψβ

: vE 7→
∫

e
∇vE · neψβ} e ∈ E1 , (ψβ)β basis of Pδe1 (e)

Lp,1 := {λp,1 : vE 7→ ∇vE (p)} p ∈ E0 , if δp1 = 0
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General set of dofs: examples with l = 4
Dof tuple:(

(δp0

, δp1

)︸ ︷︷ ︸
vertex dofs

, (δe0

, δe1

)︸ ︷︷ ︸
edge dofs

, δi︸︷︷︸
inner dofs

)
δp0, δp1 ∈ {−1, 0}, δe0, δe1, δi ≤ l

1 # non-conforming C^1 space
2 from dune.vem import vemSpace
3 spc = vemSpace(grid, order=4,
4 testSpaces=[[0,-1],[2,2],0])

non conforming H1 conforming H1 Serendipity conforming H1

((−1,−1), (3,−1), 2) ((0,−1), (2,−1), 2) ((0,−1), (2,−1), 1)

vertices
edges
element

Moments on derivatives
at vertices

moments
normal de

conforming H2 non conforming H2 C0-conf, H2-nc (4th order perturbation)
((0, 0), (0, 1), 0) ((0,−1), (1, 2), 0) ((0,−1), (2, 2), 0)
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Implementation details1

1. Grid View Th: consisting of elements E
2. Local Mapper µE : local dofs to global dofs
3. Local Nodal Basis BE : evaluate values, jacobians, hessians, ...
4. Local Operators LE : assemble local contributions
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I In agglomerated approach µT = µE for all T ⊂ E .

3. Local Nodal Basis BE : evaluate values, jacobians, hessians, ...
In FE can start with any basis ME of local space VE .
Use dofs to construct basis transform matrix AE so that

eval(E,x) = AEME (x) , jac(E,x) = AE∇ME (x) .

This does not work for VEM.

Construct A0
E ,A

1
E ,A

2
E

eval(E,x) = GE,0BE = A0
EM(x) , jac(E,x) = GE,∇BE = A1

EM(x) .

Instead of ∇pAEME implement function for Ap
EM (same interface).

Currently: basis in physical space.
4. Local Operators LE : assemble local contributions
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Implementation details1

1. Grid View Th: consisting of elements E
I Any (dune) grid
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Construct A0

E ,A
1
E ,A

2
E

eval(E,x) = GE,0BE = A0
EM(x) , jac(E,x) = GE,∇BE = A1

EM(x) .

Instead of ∇pAEME implement function for Ap
EM (same interface).

Currently: basis in physical space.
4. Local Operators LE : assemble local contributions

No changes to FEM code or code generation.

Only need eval(E,x), jac(E,x), ... at quadrature
(currently given by agglomerated triangles).
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Cahn-Hilliard Equation
Backward Euler in time with time step τ∫

Ω

un + τε2D2un : D2v + τ∇Ψ′(un) · ∇v =

∫
Ω

un−1v

with ∇u · n = 0,∇(ε24u −Ψ′(u)) · n = 0 on ∂Ω and Ψ(u) = (u2 − 1)2

final state



Extension to some vector valued spaces

Example curl free space: used for mixed formulations of Laplace
problem requiring space for σ = ∇u so curlσ = 0.
Other application: Eigenvalue problem for

∫
Ω

divu divv

Define subset of H(div) so that on each element E
I divuE ∈ Pl (E)

I curluE = 0
I in addition uE�e · n ∈ Pl (e) on each edge.

Dofs: similar to Raviart-Thomas FEM spaces (but fewer)∫
E

uE · ∇m , m ∈ Pl (E) \ P0(E) ,

∫
e

uE · nq , q ∈ Pl (e)



Navier Stokes for (u,p)
p ∈ DG0 and u in compatible space i.e., divu ∈ DG0 (order l ≥ 2).

Top two rows: VEM velocity and pressure l = 2 (left) and l = 4 (right).

Lower row: Taylor-Hood of order l = 2,4 for velocity on same grid.
Velocity dofs:∫

E
uE ·m⊥ , m⊥ ∈ x⊥Pl−3(E) ,

∫
e

uE ·nq , q ∈ Pl−2(e) , uE (v)

Spaces useful for porous media (work in progress...)



Commercial break...

Now to something completely different



VTK reader (pickling support)

Recently we added pickling (backup/restore) to dune-common:
1 grid = dune.grid.structuredGrid( [-2,-2,-2],[2,2,2],[4,4,4] )
2 space = dune.fem.space.lagrange(grid, order=4)
3 df = space.interpolate(..., name="df")
4 with open(fileName+".dbf","wb") as f:
5 dune.common.pickle.dump([df],f)

I uses Dune::BackupRestoreFacility for grids
I writes dofs of discrete functions (few lines of extra binding code)
I dump full Python object hierarchy (standard pickle)
I Extra: write source code for required generate modules

Nice: can load onto any machine (with a dune installation).



VTK reader (pickling support)

Using paraview
I Class derived from VTKPythonAlgorithmBase

I Exporting env variable export PV_PLUGIN_PATH=...

I Can p- or h-refine the grid in paraview

I Can transform functions (using ufl) e.g. compute the error
1 def error(gv,t,df,dfs):
2 ldf = dfs[0].localFunction()
3 @gridFunction(gv,name="error",order=6)
4 def _error(element,xLocal):
5 ldf.bind(element)
6 xGlobal = element.geometry.toGlobal(xLocal)
7 exact = numpy.sin(numpy.pi*x.two_norm2)
8 return abs( ldf(x) - exact )
9 return [_error,*dfs]

Nice alternative (also for teaching):
pyvista e.g. in a notebook https://pyvista.org

https://pyvista.org
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Commercial break...

And now back to the main program...



Summary and Outlook

Summary
I General approach for constructing/implementing VEM spaces
I VEM spaces available in Dune with Python bindings (with UFL)
I Many versions for nonlinear second and forth order problems
I Extension to compatible VEM spaces (deRham complex)
I ... divergence/curl free spaces

Work in Progress
I Looking at fluid flow problems, e.g., CH-NS
I Looking at Eigenvalue problems (with L Alzaben, D. Boffi)
I Looking at isoparametric VEM (with A. Cangiani, H. Wells)

Open
I 3D: concepts should carry over easily but
I ... implementation needs to be done
I Efficiency: so far code is mostly proof of concept
I ... some (threading/mpi) parallelization available
I ... want to add reference element caching where possible
I Adaptivity: refine polygons and prolongation/restriction missing
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