
Santiago Ospina De Los Ríos, Prof. Peter Bastian

DUNE User Meeting 2023, Dresden

18.09.2023

Fine-Grained Locks for
Multithreaded

Grid Operations

Contents

• Motivation

• Assembly of Finite Elements

• Grid Partition & Scheduling

• Mask Shared Region

• Fine-Grained Locks

• Shared Memory vs Private Memory

• Conclusions

Desktop Environments

Generic Binary
It’s very hard to bundle MPI in a generic

binary for usage distribution.

(e.g., multi-platform GUI)

Multi-Tasking
Program is shared with other unknown

tasks that may need higher priority.

High Performance Computing

Surface-to-Volume Ratio
High dimension or high polynomial

degree FE problems suffer from a high
surface-to-volume ratio. This translates

on higher communication overhead.

Node Level Load Balancing
Sharing memory between processes
allows the use of fair work stealing

algorithms

Motivation

def localVector(vector, lspace):
 lvector = [0., ..., 0.]

 for dof in range(lspace.size):
 lvector[dof] = vector[lspace.index(dof)]
 return lvector

Assembly of Finite Elements
Volume Integrals

def accumulateVector(vector, lspace, lvector):
 for dof in range(lspace.size):
 vector[lspace.index(dof)] += lvector[dof]

∫T
αV(uh, vh) − λV(vh)

def residual(test, trial, coeff):
 ltest = test.localView()

 ltrial = trial.localView()

 residual = [0., ..., 0.]

 for entity in grid_view:
 bind(entity, ltest, ltrial)
 lcoeff = localVector(coeff, ltrial)
 lresidual = localResidual(ltest, ltrial, lcoeff)
 accumulateVector(residual, ltest, lresidual)
 return residual

Assembly of Finite Elements
Data Storage

vertices edges cells

Data is
• …physically organized arbitrarily in memory
• …temporally accessed differently depending on the numerics
• …semantically attached to the topology of the grid

Physical Storage

Assembly of Finite Elements
Data Storage

vertices edges cells

Data is
• …physically organized arbitrarily in memory
• …temporally accessed differently depending on the numerics
• …semantically attached to the topology of the grid

Physical Storage

Semantic Storage

Assembly of Finite Elements
Scatter Data: Local to Global

Local Data

Global Data

Assembly of Finite Elements

Grid Partition & Work Scheduling

Mask Shared Region

Fine-Grained Locks

Grid Partition & Scheduling
Where to parallelize?

def residual(test, trial, coeff):
 ltest = test.localView()

 ltrial = trial.localView()

 residual = [0., ..., 0.]

 for entity in grid_view:
 bind(entity, ltest, ltrial)
 lcoeff = localVector(coeff, ltrial)
 lresidual = localResidual(ltest, ltrial, lcoeff)
 accumulateVector(residual, ltest, lresidual)
 return residual

def residual(test, trial, coeff):
 ltest = test.localView()

 ltrial = trial.localView()

 residual = [0., ..., 0.]

 for entity in grid_view:
 bind(entity, ltest, ltrial)

 lcoeff = localVector(coeff, ltrial)

 lresidual = localResidual(ltest, ltrial, lcoeff)

 accumulateVector(residual, ltest, lresidual)

 return residual

Grid Partition & Scheduling
Where to parallelize?

Grid Partition & Scheduling
Grid Partition

def partition(grid_view, n):
 begin_it = grid_view.begin()
 chunk = grid_view.size(0) / n

 remainder = grid_view.size(0) % n

 ranges = []
 for i in range(n-1):
 next_end = begin_it + (chunk + (remainder ? 1 : 0))
 ranges.append([begin_it, next_end])
 begin_it = next_end

 if reminder:
 reminder = reminder - 1
 ranges.append([begin_it, grid_view.end()])
 return ranges

list of entities

partition 0 partition 1 partition 2

Naive Partition

+ Easy: Split iterators in equal chunks

+ Generic to any grid

+ Enables same cache use as original grid

- Unknown size of shared region

- Maybe unbalanced

Load Balanced Naive Partition

+ Add many (naive) partitions to TBB

+ Generic to any grid

+ Enables same cache use as original grid

+ Automatically balanced

- Shared region is bigger than Naive Partition

def residual(test, trial, coeff):
 ltest = test.localView()

 ltrial = trial.localView()

 residual = [0., ..., 0.]

 for entity in grid_view: # multi-threaded

 bind(entity, ltest, ltrial)

 lcoeff = localVector(coeff, ltrial)

 lresidual = localResidual(ltest, ltrial, lcoeff)

 accumulateVector(residual, ltest, lresidual)
 return residual

Critical Section

def accumulateVector(vector, lspace, lvector):
 for dof in range(lspace.size):
 vector[lspace.index(dof)] += lvector[dof]

Two or more threads may race to access the same global data

Critical Section
Thread access data as in the sequential case

Local Data

Global Data

Thread 1

vector[lspace.index(dof)] += lvector[dof]

Critical Section
Two or more threads may race to access the same global data

Local Data Local Data

Thread 0 Thread 1

vector[lspace.index(dof)] += lvector[dof] vector[lspace.index(dof)] += lvector[dof]

Assembly of Finite Elements

Grid Partition & Work Scheduling

Mask Shared Region

Fine-Grained Locks

Shared Region on Grid Partitions
1. Assign a unique owner to each sub-entity
2. Find the shared region on all sub-entities
3. Collect the shared region into back into the cell

Read Only

1 Bit per cell

Partition 0 Partition 1Masking of Critical Section

M
em

or
y

Ac
ce

ss
 C

os
t (

C
yc

le
s/

Re
ad

-M
od

ify
-W

rit
e)

Processors

Masked

Unmasked

% Shared Region

% Efficiency

Sync cost per core

Flat & Low is better

Measured

Cost Distribution

Critical Section Micro-Benchmark
A proxy for synchronization cost

def benchmark(test, trial, vector):
 for entity in grid_view: # multi-threaded

 bind(entity, ltest, ltrial)
 accumulateVector(vector, ltest)

 unbind(ltest, ltrial)

Assembly of Finite Elements

Grid Partition & Work Scheduling

Mask Shared Region

Fine-Grained Locks

Fine-Grained Locks

Atomic Lock (std::atomic & std::atomic_ref)

Mutex (std::mutex)

Am
ou

nt
 o

f d
at

a
ex

cl
us

iv
e

to
 th

e
lo

ck Mutex & Batched Buffer

Grid Entity Locks

Batched Data Lock (std::mutex/N)

Same task, different exclusivity modes to access memory

Sy
nc

ro
ni

za
tio

n
co

st

Fine-Grained Locks

vertices edges cells

Each data entry has its own Compare & Swap lock

Physical Storage

Atomic Lock (std::atomic & std::atomic_ref)

Atomic LockNone

M
em

or
y

Ac
ce

ss
 C

os
t (

C
yc

le
s/

Re
ad

-M
od

ify
-W

rit
e)

Processors

Atomic LockNone

M
em

or
y

Ac
ce

ss
 C

os
t (

C
yc

le
s/

Re
ad

-M
od

ify
-W

rit
e)

Processors

Fine-Grained Locks
Atomic Lock (std::atomic & std::atomic_ref)

P1 elements in 2D Q5DG elements in 2D

Fine-Grained Locks
Let’s solve the consistency problem locally

def accumulateVector(vector, lspace, lvector):
 lspace.lock()
 for dof in range(lspace.size):
 vector[lspace.index(dof)] += lvector[dof]
 lspace.unlock()

Fine-Grained Locks
Locking algorithm: Avoiding deadlocks

class LocalSpace:
 # true: successful! we have the lock
 # false: failed! another thread has the lock
 def try_lock(self):
 # list of sub-entity padlocks
 padlocks = [, ,…, , ,…]
 size = len(padlocks)
 # try to lock all the padlocks
 for i in range(size):
 if not padlocks[i].try_lock():
 # release all our locked padlocks
 for j in range(size-i-1):
 padlocks[j].unlock()
 return False
 return True

1 lock per sub-entity

Fine-Grained Locks
Locking algorithm: Spin Lock

class LocalSpace:
 def lock(self):
 # spin until we acquire all the padlocks
 while(not self.try_lock()):
 pass

1 lock per sub-entity

Grid Entity LockNone

M
em

or
y

Ac
ce

ss
 C

os
t (

C
yc

le
s/

Re
ad

-M
od

ify
-W

rit
e)

Processors

Fine-Grained Locks
Grid Entity Locks

P1 elements in 2D Q5DG elements in 2D
Grid Entity LockNone

M
em

or
y

Ac
ce

ss
 C

os
t (

C
yc

le
s/

Re
ad

-M
od

ify
-W

rit
e)

Processors

Shared Memory vs Private Memory
Same task, different spatial modes to access memory

Benchmark of a more realistic HPC case

• Reaction-Diffusion Equation

• Structured grid in 3D

• Discontinuous Galerkin with Interior Penalty

• Assembly of a Residual Operator (Representative of Matrix-Free workload)

• AMD EPYC 7713 Milan

• 64 Cores, 1 Socket

• 1 Numa Node Per Socket (NPS=1)

• SIMD Vectorized Kernel

• ~60% of Peak Performance

• ~15 Arithmetic Intensity

VectorBitSpinLock+TBB+Unmasked

Shared Memory vs Private Memory
How to measure throughput?

• Issue: Private and Shared memory
approaches may not need the same
amount of DOFs to solve the same
problem.

U0
U1 EDOFs := dim (∪P

p=0 Up)

DOFs :=
P

∑
p=0

dim(Up)

Effective Degrees of Freedom

{

Total Degrees of Freedom{

Shared Memory vs Private Memory

Conclusions

• Entity level mutual exclusive locks are robust and scalable for Finite Elements.

• Shared region on grid partitions can amortize synchronization costs effectively.

• TBB work stealing can hides latency and unbalance issues on high core counts.

Thanks for your Attention

Question?

