Fine-Grained Locks for
Multithreaded
Grid Operations

Santiago Ospina De Los Rios, Prof. Peter Bastian

DUNE User Meeting 2023, Dresden
18.09.2023

m Federal Ministry

= ¥ of Education UNIVERSITAT
lllll disciplinary Center and Research ;ILIJE%I;Z\ILFBTERG
for Scientific Comput (gle] SET 1386
FNREEEN

Contents

Motivation

Assembly of Finite Elements
Grid Partition & Scheduling
Mask Shared Region
Fine-Grained Locks

Shared Memory vs Private Memory

Conclusions

Motivation

Desktop Environments High Performance Computing
Generic Binary Surface-to-Volume Ratio
It’s very hard to bundle MPI in a generic High dimension or high polynomial
binary for usage distribution. degree FE problems suffer from a high
(e.g., multi-platform GUI) surface-to-volume ratio. This translates

on higher communication overhead.

Multi-Tasking Node Level Load Balancing
Program is shared with other unknown Sharing memory between processes
tasks that may need higher priority. allows the use of fair work stealing

algorithms

Assembly of Finite Elements

Volume Integrals

localVector(vector, Ispace

dof Ispace.size
lvector dof| = vector|lspace.index dof
lvector

residual(test, trial. coeff

entity in grid_view
bind(entity, Itest, ltrial |
Icoeff = localVector(coeff, ltrial) —

residual = localResidual(ltest, ltrial, Icoeff) —"

accumulateVector(residual, ltest, Iresidual) —. accumulateVector(vector. Ispace, Ivector
residual dof Ispace.size

vector|lspace.index(dof lvector|dof

J' aV(I/th, Vh) — /IV(Vh)
T

Assembly of Finite Elements
Data Storage

Data is
e ...physically organized arbitrarily in memory
e ...temporally accessed differently depending on the numerics

e ...semantically attached to the topology of the grid

[TTTTTTT] —— [TTTTTTT] / [LT1] [TTTTT] [LT1 [TTTT]

Physical Storage edges cells

Assembly of Finite Elements
Data Storage

Semantic Storage

[I1T1] [I1T1]
Data is
e ...physically organized arbitrarily in memory
e ...temporally accessed differently depending on the numerics

e ...semantically attached to the topology of the grid

HEEEEEEEE S I DDy A [I . Al EEE R

Physical Storage vertices edges cells

Assembly of Finite Elements

Scatter Data: Local to Global

Assembly of Finite Elements

Grid Partition & Work Scheduling

Mask Shared Region

Fine-Grained Locks

Grid Partition & Scheduling

Where to parallelize?

def residual(test, trial. coeff

for entity in grid_view
bind(entity, ltest, Itrial
lcoeff = localVector(coeft, Itrial
Iresidual = localResidual(ltest, Itrial, lcoeff
accumulateVector(residual, ltest, Iresidual
return residual

Grid Partition & Scheduling

Where to parallelize?

def residual(test, trial. coeff

for entity in grid_view

Grid Partition & Scheduling

Grid Partition

Naive Partition

Easy: Split iterators in equal chunks
Generic to any grid

+ + +

Enables same cache use as original grid

Unknown size of shared region
Maybe unbalanced

Load Balanced Naive Partition

Add many (naive) partitions to TBB
Generic to any grid
Enables same cache use as original grid

+ + + +

Automatically balanced
Shared region is bigger than Naive Partition

list of entities
partition O ///~/// ///~/// partition 2

Critical Section

Two or more threads may race to access the same global data

def accumulateVector(vector, Ispace, lvector
» for dof in range(lspace.size
vector|/Ispace.index(dof)| += Ivector dof

accumulateVector(residual, ltest, Iresidual) —~

Local Data

Critical Section

Thread access data as in the sequential case

D Global Data

{_
o

Critical Section

Two or more threads may race to access the same global data

Thread 0 Thread 1
[|
0
s I '
- D
Local Data 2 X
I B
! D ;;f':::.. »
0
0
I A

vector|lspace.index(dof lvector|dof " vector Ispace.index(dof lvector| dof

Assembly of Finite Elements

Grid Partition & Work Scheduling

Mask Shared Region

Fine-Grained Locks

Partition O

Masking of Critical Section
% Shared Region on Grid Partitions %

1. Assign a uniqgue owner to each sub-entity
2. Find the shared region on all sub-entities
3. Collect the shared region into back into the cell

Critical Section Micro-Benchmark

A proxy for synchronization cost

100% 99% 98% 98% 96% 92% 94%
100% 99% 98% 96% 92% 81% 76%

70
60 Masked
Unmasked
Sync cost per core
>0
def benchmark(test, trial, vector 40 i

Measured
for entity in grid_view: # multi-threaded Cost Distribution
bind(entity, ltest, ltrial
accumulateVector(vector. ltest

unbind(ltest, Itrial)

W
-

N
-

-
-

Memory Access Cost (Cycles/Read-Modify-Write)

% Shared Region

0

1 2 4 8 16 32H32

Processors

Assembly of Finite Elements

Grid Partition & Work Scheduling

Mask Shared Region

Fine-Grained Locks

Fine-Grained Locks §

Same task, different exclusivity modes to access memory

Mutex (std::mutex)

Mutex & Batched Buffer

Batched Data Lock (std::mutex/N)

Syncronization cost

Grid Entity Locks

e
O
O
O
L
e
O
e
O
=
2
=
O
X
O
©
e
©
O
Y
O
e
-
>
O
e
<

Atomic Lock (std::atomic & std::atomic ref)

Fine-Grained Locks

Atomic Lock (std::atomic & std::atomic_ref)

Each data entry has its own Compare & Swap lock

88888888 88888888 888 888 88888
HEEEEEEEE e I I Dy, A I I .4 EEEE N

Physical Storage vertices edges cells

Fine-Grained Locks

Atomic Lock (std::atomic & std::atomic_ref)

P1 elements in 2D Q5DG elements in 2D

E None Atomic Lock -*GE) None Atomic Lock

; v 100% 81% 81% 77% 74% 62% 84% |100% 84% 85% 85% 79% 67% 94% ; U 100% 106% 107% 107% 101% 70% 68% JLO0% 99% 99% 99% 98% 88% 90%
> 1200 —100% 84% 87% 84% 79% 70% 90% L 60 —|t00% 92% 79% 62% 48% 45% 53%]
> —

3 3

> 1000 : - > 50 _ _
@ 800 = = % 40 . : o
7p)

= Masked S Masked r v
& 600 Unasked - - & 30 Unasked S P —— J;__J -
1) 1)

o) o) /

O 400 = . A 20 _ — i
p) 7p) =

7p) 7p)

S <{> i J» S 10 in

8 200 | 1L gati dbrtti S| oy

N c

o o

s 0 e O

i 1 2 4 8 1632H321 2 4 8 16 32H32 2 1 2 4 8 1632H321 2 4 8 16 32H32

Processors

Processors

Fine-Grained Locks

Let’s solve the consistency problem locally

def accumulateVector(vector, Ispace, lvector
Ispace.lock
for dof in range(lspace size
vector|lspace.index(dof)| += Ivector dof
Ispace.unlock

Fine-Grained Locks
Locking algorithm: Avoiding deadlocks

Fine-Grained Locks
Locking algorithm: Spin Lock

Fine-Grained Locks

Grid Entity Locks

P1 elements in 2D Q5DG elements in 2D

2 None Grid Entity Lock 2 None Grid Entity Lock
§| 12 08 LOO% BA% BLY T 7% 6% 84%h 100U BEh S8V 92 Eon T0% 5% ;I 68 TOO% T06% 107% 107% T01% 70% 6% J100% 00% 07% 05% 00% 53% 2%
& &
3 3
2. 1000 — 2. 50 _
O O
: :

800 N
L T 40 -
% 0
% Masked % Masked
3 % YlrEslese B & 30 Unasked -
2 2
o 400 = 3 20 _
" "
))
@ @ L
Lo | f et gii A4 | ! 1 et
- -
g 0 g 0
% 1 2 4 8 16 32H321 2 4 8 16 32H32 % 1 2 4 8 1632H321 2 4 8 16 32H3?2

Processors Processors

Shared Memory vs Private Memory

Same task, different spatial modes to access memory

Benchmark of a more realistic HPC case

e Reaction-Diffusion Equation
e Structured grid in 3D
e Discontinuous Galerkin with Interior Penalty

e Assembly of a Residual Operator (Representative of Matrix-Free workload)
e AMD EPYC 7713 Milan

e 064 Cores, 1 Socket

e 1 Numa Node Per Socket (NPS=1)
e SIMD Vectorized Kernel

e ~60% of Peak Performance

e ~15 Arithmetic Intensity

Shared Memory vs Private Memory

How to measure throughput?

Issue: Private and Shared memory
Total Degrees of Freedom

approaches may not need the same p
amount of DOFs to solve the same DOFs := Z dim(Up)
problem. =0

N K P
J EDOFs := dim (U= Up>
Effective Degrees of Freedom

Shared Memory vs Private Memory

Diffusion-Reaction Operator Aplication Q,‘ig
AMD EPYC 7713 64-Core

1400

ol AT T

800

-
-
o
-

600

Effective MDOFs/s

400

200 64 MPI Processes
64 TBB Threads

1 2 3 il 5 6 7 3 9 10
Polynomial degree k

Conclusions

e Entity level mutual exclusive locks are robust and scalable for Finite Elements.
e Shared region on grid partitions can amortize synchronization costs effectively.

e [BB work stealing can hides latency and unbalance issues on high core counts.

Thanks for your Attention

Question?

