UiO **Content of Mathematics**

University of Oslo

https://dumux.org/

https://timokoch.github.io/

Finite volume schemes and coupled problems in DuMu^x

Timo Koch

<u>DuMu^x</u> is a simulation framework with a focus on **finite volume discretization methods**, **model coupling for multi-physics applications, and flow and transport applications in porous media**.

DuMu^x is based on the <u>DUNE</u> framework from which it uses the versatile grid interface, vector and matrix types, geometry and local basis functions, and linear solvers. DuMu^x then provides

- Finite volume discretizations (Tpfa, Mpfa, Staggered) and control-volume finite element discretization schemes
- A (thread-parallel) system matrix assembler (coloring) and approximation of the Jacobian matrix by numeric differentiation
- A customizable Newton method implementation including line search and various stopping criteria
- Many pre-implemented models (Darcy-scale porous media flow, Navier-Stokes, Geomechanics, Pore network models, Shallow water equations) and constitutive models
- A multi-domain framework for model coupling suited to couple subproblems with different discretizations/domains/physics/dimensions/... and create monolithic solvers

Timo Koch, University of Oslo

DuMu^x - DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media

An open-source simulator and research code in modern C++

https://dumux.org/

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Finite volumes

Vertex-centered, face-centered, cell-centered, ...

Control volume finite element schemes

Combine FE functions and control volumes

Local mass conservation by construction

Unstructured meshes

Recipe

Nodal basis function (some FE space)

Construct control volumes "around" nodal degrees of freedom

Element-wise assembly

Recipe

Nodal basis function (some FE space)

Construct control volumes "around" nodal degrees of freedom

Element-wise assembly

Recipe

Nodal basis function (some FE space)

Construct control volumes "around" nodal degrees of freedom

Element-wise assembly

SCVs are associated with dofs

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Finite volumes / Control volume finite element schemes

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

DuMu^x

Other trial function spaces

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Other trial function spaces

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Other trial function spaces

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Other trial function spaces

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

DuMu^x

Other trial function spaces

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Other trial function spaces

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

UiO Department of Mathematics

University of Oslo

template<class Context> NumEqVector stokesMomentumFlux(const Context& context) const

```
const auto& element = context.element();
const auto& fvGeometry = context.fvGeometry();
const auto& elemVolVars = context.elemVolVars();
const auto& scvf = context.scvFace();
const auto& fluxVarCache = context.elemFluxVarsCache()[scvf];
```

```
// interpolate velocity gradient at scvf
Tensor gradV(0.0);
```

```
for (const auto& scv : scvs(fvGeometry))
```

```
const auto& volVars = elemVolVars[scv];
for (int dir = 0; dir < dim; ++dir)
    gradV[dir].axpy(volVars.velocity(dir), fluxVarCache.gradN(scv.indexInElement()));</pre>
```

```
const auto mu = context.problem().effectiveViscosity(element, fvGeometry, scvf);
const auto pressure = context.problem().pressure(element, fvGeometry, scvf);
```

```
// compute -(mu*(\[Vv + \[Vv^T) - p)*n*dA
NumEqVector flux = mv(gradV + transpose(gradV), scvf.unitOuterNormal());
flux *= -mu * Extrusion::area(fvGeometry, scvf);
flux.axpy(pressure * Extrusion::area(fvGeometry, scvf), scvf.unitOuterNormal());
```

return flux;

```
Stokes equations
\int_{\partial K} [-2\mu \boldsymbol{D}(\boldsymbol{v}_h) + p_h \boldsymbol{I}] \cdot \mathbf{n} \, \mathrm{d}A = \int_K \boldsymbol{f} \, \mathrm{d}x, \quad \forall K \in \mathcal{T}^{\boldsymbol{v}},\int_{\partial K} \boldsymbol{v}_h \cdot \mathbf{n} \, \mathrm{d}A = \int_K q \, \mathrm{d}x, \quad \forall K \in \mathcal{T}^p,
```

 $\boldsymbol{D}(\boldsymbol{v}) = \frac{1}{2} \left(\nabla \boldsymbol{v} + \nabla^T \boldsymbol{v} \right)$

Other trial function spaces

@ Dune Meeting, Dresden 2023

Stable and locally mass- and momentum-conservative control-volume finite-element schemes for the Stokes problem

Martin Schneider^a, Timo Koch^b

https://arxiv.org/abs/2309.00321

Table 3: Convergence study. Bercovier–Engelman test case (2D) on a Delaunay grid.

scheme	h^p	$\ p_h-p\ _{L^2}$	rate	h^v	$\ \boldsymbol{v}_h - \boldsymbol{v}\ _{L^2}$	rate	$\ \boldsymbol{v}_h - \boldsymbol{v}\ _{H^1}$	rate	it
	1.0e-01	6.51e-01	-	6.2e-02	4.73e-02	-	1.74e + 00	-	24
$\overset{[\mathbb{P}^{\mathrm{ov}}_{1+b}]^2}{\underset{\mathbb{P}_1}{\times}}$	5.7e-02	3.05e-01	1.34	3.4e-02	1.28e-02	2.21	9.49e-01	1.03	26
	3.1e-02	1.09e-01	1.66	1.8e-02	3.62e-03	1.98	4.82e-01	1.06	26
	1.6e-02	4.04e-02	1.51	9.3e-03	9.37e-04	2.04	2.48e-01	1.00	26
	8.1e-03	1.51e-02	1.44	4.7e-03	2.42e-04	1.96	1.24e-01	1.01	26
	4.1e-03	5.48e-03	1.48	2.4e-03	6.16e-05	2.00	6.25e-02	1.00	27
	1.0e-01	8.25e-01	-	6.2e-02	4.74e-02	-	1.76e + 00	-	26
$[mhy]^2$	5.7e-02	3.95e-01	1.31	3.4e-02	1.31e-02	2.18	9.60e-01	1.03	28
$\begin{bmatrix} \mathbf{I}^{\mu}1 + b \end{bmatrix}$	3.1e-02	1.41e-01	1.65	1.8e-02	3.61e-03	2.01	4.88e-01	1.06	28
×	1.6e-02	5.22e-02	1.52	9.3e-03	9.40e-04	2.03	2.51e-01	1.00	29
\mathbb{P}_1	8.1e-03	1.96e-02	1.43	4.7e-03	2.42e-04	1.97	1.25e-01	1.01	29
	4.1e-03	7.08e-03	1.49	2.4e-03	6.17e-05	1.99	6.32e-02	1.00	29
	1.0e-01	6.00e-01	-	6.2e-02	4.83e-02	-	1.73e+00	-	24
[mnov]2	5.7e-02	2.97e-01	1.25	3.4e-02	1.36e-02	2.15	9.48e-01	1.02	26
$\lfloor r_{1+b} \rfloor$	3.1e-02	1.07e-01	1.63	1.8e-02	3.45e-03	2.14	4.81e-01	1.06	26
×	1.6e-02	4.02e-02	1.50	9.3e-03	8.90e-04	2.05	2.48e-01	1.00	26
\mathbb{P}_1	8.1e-03	1.50e-02	1.44	4.7e-03	2.21e-04	2.02	1.24e-01	1.01	26
	4.1e-03	5.46e-03	1.48	2.4e-03	5.64e-05	1.99	6.25e-02	1.00	27
	1.0e-01	1.11e+00	-	6.2e-02	9.81e-02	-	1.82e + 00	-	26
$ \begin{smallmatrix} [\mathbb{P}_{1+b}^{\text{fem}}]^2 \\ \times \\ \mathbb{P}_1 \end{smallmatrix} $	5.7e-02	5.92e-01	1.11	3.4e-02	2.70e-02	2.19	9.82e-01	1.05	28
	3.1e-02	2.19e-01	1.59	1.8e-02	6.37e-03	2.26	4.92e-01	1.08	28
	1.6e-02	8.07e-02	1.53	9.3e-03	1.56e-03	2.12	2.52e-01	1.01	28
	8.1e-03	3.06e-02	1.42	4.7e-03	3.71e-04	2.08	1.25e-01	1.01	28
	4.1e-03	1.10e-02	1.50	2.4e-03	9.34e-05	2.01	6.33e-02	1.00	28

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Finite volumes / Cell-centered schemes

Tpfa

CV = SCV

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

https://dumux.org

$scv = CV \cap Element$

Mpfa

Multidomain

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Multidomain

0.0 days

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

DuMu^x

Multidomain "CouplingManager"

```
/*!
 * \brief returns an iterable container of all indices of degrees of freedom of domain j
          that couple with / influence the element residual of the given element of domain i
 *
 *
 * \param domainI the domain index of domain i
 * \param elementI the coupled element of domain i
 * \param domainJ the domain index of domain j
 *
 * \note The element residual definition depends on the discretization scheme of domain i
          box: a container of the residuals of all sub control volumes
 *
          cc : the residual of the (sub) control volume
 *
          fem: the residual of the element
 * \note This function has to be implemented by all coupling managers for all combinations of i and j
 */
template<std::size_t i, std::size_t j>
const CouplingStencilType<i, j>& couplingStencil(Dune::index_constant<i> domainI,
                                                 const Element<i>& elementI,
                                                 Dune::index_constant<j> domainJ) const
{
     . . .
}
```

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Multidomain "CouplingManager"

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Multidomain "MultiDomainAssembler"

Newton until convergence:

$$J_{n+1} = U_n - (\partial R/\partial U)^{-1} R(U_n)$$

Dune::MultiTypeBlockMatrix

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

Stokes in DuMux multidomain

Prototyping coupled problems

Stokes equations	Coupled PDE	pled PDE Multiple discretization schemes		
$ \begin{split} \int_{\partial K} [-2\mu \boldsymbol{D}(\boldsymbol{v}_h) + p_h \boldsymbol{I}] \cdot \mathbf{n} \mathrm{d}A &= \int_K \boldsymbol{f} \mathrm{d}x, \forall K \in \mathcal{T}^{\boldsymbol{v}}, \\ \int \boldsymbol{v}_h \cdot \mathbf{n} \mathrm{d}A &= \int q \mathrm{d}x, \forall K \in \mathcal{T}^p, \end{split} $	Momentum mode	$\mathbb{P}_1^{\scriptscriptstyle +B}$ \mathbb{P}_1	₽ _k ₽ _{k-1}	\mathbb{P}_1^{CR} \mathbb{P}_0
$egin{aligned} J_{\partial K} & J_K \ & & & \ & & \ & oldsymbol{D}(oldsymbol{v}) = \ rac{1}{2} \left(abla oldsymbol{v} + abla^T oldsymbol{v} ight) \end{aligned}$	indes inclusi	_		Ū

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

{

}

Multidomain "CouplingManager"

Give me coupled variable at integration point

```
auto divU(typename GridGeometry<flowIdx>::LocalView const& fvGeometry,
          typename GridGeometry<flowIdx>::SubControlVolume const& scv) const
    const auto& gg = this->problem(mechanicsIdx).gridGeometry();
    const auto elemSol = elementSolution(fvGeometry.element(), curSol(mechanicsIdx), gg);
    const auto gradU = evalGradients(
        fvGeometry.element(),
        fvGeometry.element().geometry(),
        qq, elemSol,
                                                                auto porePressure(typename GridGeometry<mechanicsIdx>::LocalView const& fvGeometry,
        scv.center()
                                                                                   typename GridGeometry<mechanicsIdx>::SubControlVolumeFace const& scvf) const
    );
                                                                {
                                                                    const auto& gg = this->problem(flowIdx).gridGeometry();
    double divU = 0.0;
                                                                    const auto elemSol = elementSolution(fvGeometry.element(), curSol(flowIdx), gg);
    for (int i = 0; i < gradU.size(); ++i)</pre>
                                                                     return evalSolution(
        divU += gradU[i][i];
                                                                         fvGeometry.element(),
    return divU;
                                                                         fvGeometry.element().geometry(),
                                                                        gg, elemSol,
                                                                        scvf.ipGlobal()
                                                                    )[0];
                                                                }
```

Timo Koch, University of Oslo

@ Dune Meeting, Dresden 2023

