Finite volume schemes and coupled problems in DuMux

Timo Koch

https://dumux.org/
https://timokoch.github.io/
DuMux is a simulation framework with a focus on finite volume discretization methods, model coupling for multi-physics applications, and flow and transport applications in porous media.

DuMux is based on the DUNE framework from which it uses the versatile grid interface, vector and matrix types, geometry and local basis functions, and linear solvers. DuMux then provides

- **Finite volume discretizations** (Tpfa, Mpfa, Staggered) and control-volume finite element discretization schemes
- A (thread-parallel) system matrix assembler (coloring) and approximation of the Jacobian matrix by numeric differentiation
- A customizable Newton method implementation including line search and various stopping criteria
- Many pre-implemented models (Darcy-scale porous media flow, Navier-Stokes, Geomechanics, Pore network models, Shallow water equations) and constitutive models
- A multi-domain framework for model coupling suited to couple subproblems with different discretizations/domains/physics/dimensions/... and create monolithic solvers
DuMuX - DUNE for Multi-\{Phase, Component, Scale, Physics, ...\} flow and transport in porous media
An open-source simulator and research code in modern C++

https://dumux.org/
Finite volumes

Vertex-centered, face-centered, cell-centered, ...

Control volume finite element schemes

Combine FE functions and control volumes

Local mass conservation by construction

Unstructured meshes
Finite volumes / Control volume finite element schemes

Recipe

Nodal basis function (some FE space)

Construct control volumes “around” nodal degrees of freedom

Element-wise assembly
Finite volumes / Control volume finite element schemes

Recipe

Nodal basis function (some FE space)

Construct control volumes “around” nodal degrees of freedom

Element-wise assembly
Finite volumes / Control volume finite element schemes

Recipe

Nodal basis function (some FE space)

Construct control volumes “around” nodal degrees of freedom

Element-wise assembly

SCVs are associated with dofs
Finite volumes / Control volume finite element schemes

Interpretation as Petrov Galerkin FEM

control volumes \(K \in \mathcal{T} \)

\[
C_K(x) := \begin{cases}
 c_K \in \mathcal{P}^0(K) & x \in K, \\
 0 & x \notin K,
\end{cases}
\]

\[
B_h(\mathcal{T}) = \left\{ q_h \in L^2(\Omega) : q_h = \sum_{K \in \mathcal{T}} C_K \right\}
\]

\[
\int_{\Omega} r q_h \, dx = 0 \quad \forall q_h \in B_h(\mathcal{T}) \iff \int_K r \, dx = 0 \quad \forall K \in \mathcal{T}.
\]
Finite volumes / Control volume finite element schemes

Other trial function spaces
Finite volumes / Control volume finite element schemes

Other trial function spaces
Finite volumes / Control volume finite element schemes

Other trial function spaces

CV

\(P_1^{+B} \)

\(P_1^{(-B)} \)

cubic bubble functions
Finite volumes / Control volume finite element schemes

Other trial function spaces

3D?
Faces within elements?

Non-overlapping CVFE

cubic bubble functions
Finite volumes / Control volume finite element schemes

Other trial function spaces

Overlapping CV

Overlapping CVFE

cubic bubble functions

\[P_1^{+B} \]

\[P_1^{(-B)} \]
Finite volumes / Control volume finite element schemes

Other trial function spaces
template<class Context> NumEqVector stokesMomentumFlux(const Context& context) const
{
 const auto& element = context.element();
 const auto& fvGeometry = context.fvGeometry();
 const auto& elemVolVars = context.elemVolVars();
 const auto& scvf = context.scvFace();
 const auto& fluxVarCache = context.elemFluxVarsCache()[scvf];

 // interpolate velocity gradient at scvf
 Tensor gradV(0.0);
 for (const auto& scv : scvs(fvGeometry))
 {
 const auto& volVars = elemVolVars[scv];
 for (int dir = 0; dir < dim; ++dir)
 gradV[dir].axpy(volVars.velocity(dir), fluxVarCache.gradN(scv.indexInElement()));
 }

 const auto mu = context.problem().effectiveViscosity(element, fvGeometry, scvf);
 const auto pressure = context.problem().pressure(element, fvGeometry, scvf);

 // compute -(\mu*(\nabla v + (\nabla v)^T) - p)*n*dA
 NumEqVector flux = mv(gradV + transpose(gradV), scvf.unitOuterNormal());
 flux *= -mu * Extrusion::area(fvGeometry, scvf);
 flux.axpy(pressure * Extrusion::area(fvGeometry, scvf), scvf.unitOuterNormal());

 return flux;
}

Stokes equations

\[
\int_{\partial K} [-2\mu \mathbf{D}(\mathbf{v}_h) + p_h \mathbf{I}] \cdot \mathbf{n} \, dA = \int_K f \, dx, \quad \forall K \in T^v,
\]

\[
\int_{\partial K} \mathbf{v}_h \cdot \mathbf{n} \, dA = \int_K q \, dx, \quad \forall K \in T^p,
\]

\[
D(v) = \frac{1}{2} \left(\nabla v + (\nabla v)^T \right)
\]
Finite volumes / Control volume finite element schemes

Other trial function spaces

Hybrid CVFE

Local conservation

test function space

hierarchical split

\[P_2 = P_1 + \text{rest} \]
Finite volumes / Control volume finite element schemes

Stable and locally mass- and momentum-conservative control-volume finite-element schemes for the Stokes problem

Martin Schneider*, Timo Koch

https://arxiv.org/abs/2309.00321

Table 3: Convergence study. Boussinesq flow test case (2D) on a Delaunay grid.

| scheme | h^* | $||p - p'||_1$ rate | k^* | $||v_n - w||_1$ rate | $||v_n - w||_{1,y}$ rate | l_{z} |
|--------|-------|----------------------|-------|----------------------|--------------------------|-------|
| $[P_0(1)^3]$ | h^* | 1.0e-01 | 6.51e-01 | - | 6.2e-02 | 4.73e-02 | - | 1.7e+00 | - | 24 |
| $[P_1(1)^3]$ | h^* | 5.7e-02 | 3.06e-01 | 1.34 | 3.4e-02 | 1.28e-02 | 2.21 | 9.4e-01 | 1.03 | 26 |
| P_1 | h^* | 3.1e-01 | 1.06e-01 | 1.66 | 1.8e-02 | 3.62e-03 | 1.98 | 4.8e-01 | 1.06 | 26 |
| h^* | k^* | 1.5e-02 | 4.06e-02 | 1.51 | 9.3e-03 | 9.37e-04 | 2.04 | 2.48e-01 | 1.00 | 26 |
| $[P_0(1)^3]$ | h^* | 8.1e-03 | 1.51e-02 | 1.44 | 4.7e-03 | 2.42e-04 | 1.96 | 1.24e-01 | 1.01 | 26 |
| P_1 | h^* | 4.0e-03 | 5.48e-03 | 1.48 | 2.4e-03 | 6.10e-05 | 2.00 | 6.25e-02 | 1.00 | 27 |

Control-volume finite element (CVF) discretizations for the Stokes problem

SCV of vertex-centered CV
SCV of element-centered CV
FEM integration region

Timo Koch, University of Oslo
@ Dune Meeting, Dresden 2023
https://dumux.org
Finite volumes / Cell-centered schemes

\[scv = CV \cap \text{Element} \]

Tpfa

Mpfa

Staggered

\[CV = scv \]
Multidomain
Multidomain
Multidomain “CouplingManager”

/*!
 * \brief returns an iterable container of all indices of degrees of freedom of domain j
 * that couple with / influence the element residual of the given element of domain i
 *
 * \param domainI the domain index of domain i
 * \param elementI the coupled element of domain i
 * \param domainJ the domain index of domain j
 *
 * \note The element residual definition depends on the discretization scheme of domain i
 * box: a container of the residuals of all sub control volumes
 * cc : the residual of the (sub) control volume
 * fem: the residual of the element
 * \note This function has to be implemented by all coupling managers for all combinations of i and j
 */

template<std::size_t i, std::size_t j>
const CouplingStencilType<i, j>& couplingStencil(Dune::index_constant<i> domainI,
 const Element<i>& elementI,
 Dune::index_constant<j> domainJ) const
{

 ...

}

Multidomain “CouplingManager”

```cpp
/*!
 * \brief returns an iterable container of all indices of degrees of freedom of domain j
 * that couple with / influence
 *
 * \param domainI the domain inde.
 * \param elementI the coupled element.
 * \param domainJ the domain inde.
 *
 * \note The element residual deliver a container of the
 *      box: a container of the
 *      cc : the residual of the
 *      fem: the residual of the element
 * \note This function has to be implemented by all coupling managers for
 */

template<std::size_t i, std::size_t j>
const CouplingStencilType<i, j>& couplingStencil(Dune::index_constant<i> d
const Element<i>& element
Dune::index_constant<j> j d

{

    ...

}
```
Multidomain “MultiDomainAssembler”

\[R(U) = 0 \]

Newton until convergence:

\[U_{n+1} = U_n - (\partial R / \partial U)^{-1} \cdot R(U_n) \]

Dune::MultiTypeBlockMatrix
Stokes in DuMux multidomain

Prototyping coupled problems

Stokes equations

\[
\int_{\partial K} [-2\mu D(v_h) + p_h I] \cdot n \, dA = \int_K f \, dx, \quad \forall K \in \mathcal{T}^v,
\]

\[
\int_{\partial K} v_h \cdot n \, dA = \int_K q \, dx, \quad \forall K \in \mathcal{T}^p,
\]

\[
D(v) = \frac{1}{2} \left(\nabla v + \nabla^T v \right)
\]

Coupled PDE

- **Momentum model**
 - \(P_{1}^{+B} \)
 - \(P_{k} \)
 - \(P_{1}^{CR} \)

- **Mass model**
 - \(P_{1} \)
 - \(P_{k-1} \)
 - \(P_{0} \)

Multiple discretization schemes
Multidomain “CouplingManager”

Give me coupled variable at integration point

```cpp
auto divU(typename GridGeometry<flowIdx>::LocalView const& fvGeometry,
          typename GridGeometry<flowIdx>::SubControlVolume const& scv) const
{
    const auto& gg = this->problem(mechanicsIdx).gridGeometry();
    const auto elemSol = elementSolution(fvGeometry.element(), curSol(mechanicsIdx), gg);

    const auto gradU = evalGradients(
        fvGeometry.element(),
        fvGeometry.element().geometry(),
        gg, elemSol,
        scv.center()
    );

    double divU = 0.0;
    for (int i = 0; i < gradU.size(); ++i)
        divU += gradU[i][i];
    return divU;
}

auto porePressure(typename GridGeometry<mechanicsIdx>::LocalView const& fvGeometry,
                  typename GridGeometry<mechanicsIdx>::SubControlVolumeFace const& scvf) const
{
    const auto& gg = this->problem(flowIdx).gridGeometry();
    const auto elemSol = elementSolution(fvGeometry.element(), curSol(flowIdx), gg);
    return evalSolution(
        fvGeometry.element(),
        fvGeometry.element().geometry(),
        gg, elemSol,
        scvf.ipGlobal()
    )[0];
}
```