Introduction to Dune-Fem

W= rics Environment

Distributed and Unified N

The DUNE-FEM developers*

July 30, 2012

*Abteilung fiir Angewandte Mathematik, Universitdat Freiburg,
Hermann-Herder-Str. 10, D-79104 Freiburg, Germany

http://dune.mathematik.uni-freiburg.de/

dune@mathematik.uni-freiburg.de

http://dune.mathematik.uni-freiburg.de/

Contents

1 What is Dune-Fem?

1.1
1.2
1.3
14
1.5

2.1
2.2

2.3

3.1

3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

Available example implementations using DUNE-FEM
The DUNE Core Modules
Available Grid Implementations
Download and installation
Create your own project

The Transport-Example with Dune-Fem

A Tiny Introduction to Finite Volume Schemes
Implementation overview Lo
2.2.1 The main function
2.2.2 The basic algorithm oo
2.2.3 The methods initialize and compute
Parallelization

Solving the Poisson problem

Implementation
3.1.1 Algorithm
3.1.2 Assembling the Laplace operator
3.1.3 Boundary treatment oL
3.1.4 Assembling the right hand side
Adaptation
Parallelization

An LDG solver for Advection-Diffusion Equations

Advection-Diffusion Equation
Implementation overview
Main Loop e
Stepper control class L L
Setting up an LDGPass o o
Implementing your own Pass Operator

11
11
13
13
21
25
28

29
30
31
35
39
40
40
41

Contents

4.7 Visualisation and EOC Output 57

5 Solving the Stokes problem 59
5.1 Implementation 61
51.1 Algorithm 62

5.1.2 Assembling the Laplace operator 67

5.1.3 Assembling the discrete divergence operator 68

5.1.4 Boundary treatment 73

5.1.5 Assembling the right hand side 73

5.2 Parallelization 73

6 Documentation and reference guide for Dune-Fem 74

1 What is Dune-Fem?

DUNE-FEM is a DUNE module providing a framework for implementing discretizations
based on grids described by the DUNE-GRID interface. DUNE-FEM is also free software,
but in contrast to DUNE, it is licensed under the standard GPL licence (see http://
dune.mathematik.uni-freiburg.de).

DUNE, the Distributed and Unified Numerics Environment is a modular toolbox for solv-
ing partial differential equations with grid-based methods. DUNE is free software licensed
under the GPL with a so called “runtime exception” (http://www.dune-project.org/
license.html). The main intention is to create slim interfaces allowing an efficient use
of legacy and/or new libraries. Using C++ techniques DUNE allows to use very different
implementations of the same concept (e.g., grids, solvers) using a common interface with
a very low overhead. For more information we refer to http://www.dune-project.org/
dune.html.

1.1 Available example implementations using Dune-Fem

This section describes briefly which examples are available in this DUNE-FEM-HOwTO.
These examples demonstrate the most commonly used features from DUNE-FEM. The
DUuNE-FEM-HOWTO contains the following examples, ordered by increasing difficulty:

Getting started (dune-fem-howto/tutorial/gettingstarted) This example shows how
to calculate a Lagrange interpolation for a given analytical function.

A Finite Volume scheme (dune-fem-howto/tutorial/finitevolume) This example
demonstrates the implementation of a first order Finite Volume scheme using
DUNE-FEM. A detailed code description is given in Chapter 2.

The Poisson problem (dune-fem-howto/tutorial/poisson) This is an example for
calculating a solution of the Poisson problem —Aw = f with Dirichlet bound-
ary. The code can be executed in a parallel environment. Details can be found in
Chapter 3.

http://dune.mathematik.uni-freiburg.de
http://dune.mathematik.uni-freiburg.de
http://www.dune-project.org/license.html
http://www.dune-project.org/license.html
http://www.dune-project.org/dune.html
http://www.dune-project.org/dune.html

1 What is DUNE-FEM?

L?-projection (dune-fem-howto/examples/12projection) This is an example for cal-
culating the L?-projection of an analytical function to a discrete function space.
The code uses basically the same features as for the Poisson example from Chap-
ter 3. Therefore, no detailed description is availavble.

LDG for Advection-Diffusion equations (dune-fem-howto/tutorial/localdg) Thisis
an example for implementing a Local DG solver for advection-diffusion problems.
All features are described in Chapter 4. This example code can be used for parallel
computations.

The Stokes problem (dune-fem-howto/tutorial/stokes) This example shows how to
implement a Stokes solver in the DUNE-FEM context. The description is presented
in Chapter 5.

Data 1/0 and check pointing (dune-fem-howto/examples/dataio) This example shows
how to incorporate data I/O and check pointing into your simulation code. At the
moment no detailed description, other then the code example, is available.

1.2 The Dune Core Modules

The framework consists of a number of modules which are downloadable as separate
packages. The current core modules are:

Dune-Common contains the basic classes used by all DUNE modules. It provides some
infrastructural classes for debugging and exception handling as well as a dense
matrix/vector template library.

Dune-Grid is the most mature module. It defines nonconforming, hierarchically nested,
multi-element-type, parallel grids in arbitrary space dimensions. Graphical output
through several packages is available, e.g., file output to VTK (parallel XML for-
mat for unstructured grids). The graphics package GraPE has been integrated in
interactive mode.

Dune-Istl (Iterative Solver Template Library) provides generic sparse matrix/vector
classes and a variety of solvers based on them. A special feature is the use of tem-
plates to exploit the recursive block structure of finite element matrices at compile
time. Available solvers include Krylov methods, (block-) incomplete decomposi-
tions and aggregation-based algebraic multigrid.

1 What is DUNE-FEM?

Dune-LocalFunctions is the most recent DUNE core module. It provides a common
interface for local basis functions, local interpolations, and the local DoF adminis-
tration.

1.3 Available Grid Implementations

So far seven grid implementations are included in the DUNE-GRID module, each geared
towards a different purpose:

AlbertaGrid The grid manager of the ALBERTA toolbox providing 1d/2d/3d simplicial
grids with recursive, conforming bisection refinement

ALUGrid Based on the ALUGrid library, the following DUNE grid implementations are
available:

ALUCubeGrid A parallel (only 3d), locally adaptive (non-conforming) grid provid-
ing hexahedral or quadrilateral elements

ALUSimplexGrid A parallel (only 3d), locally adaptive (non-conforming) grid pro-
viding tetrahedral or triangular elements

ALUConformGrid A locally adaptive (conforming) grid providing triangular ele-
ments using an iterative bisection algorithm for refinement

GeometryGrid A metagrid (i.e., a grid based on another DUNE grid, called the host
grid) replacing the host grid’s geometry and adding entities of all codimensions

OneDGrid A sequential locally adaptive grid in one space dimension

SGrid A structured grid in n space dimensions

UGGrid The grid manager of the UG!

YaspGrid A structured parallel grid in n space dimensions (used as default grid)

More information on these grids can be found on the DUNE documentation website?.

UG is not freely available
’http://www.dune-project.org/doc/devel/features.html

http://www.dune-project.org/doc/devel/features.html

1 What is DUNE-FEM?

1.4 Download and installation

This section describes how members of the Section of Applied Mathematics in Freiburg
can create a local working installation of DUNE.

These are only the basic steps, maybe you have to tune up some options. For non-
Freiburg users, the steps are similiar. For more information, have a look at the installa-
tion notes website?.

e Create a directory for your DUNE installation and change to it. For example:

mkdir dune
cd dune

Download the latest (stable) core modules from the official DUNE homepage http://
www.dune-project.org/download.html and unpack them to your DUNE direc-
tory. For example:

tar -xzf dune-common-2.0.tar.gz
tar -xzf dune-grid-2.0.tar.gz
tar -xzf dune-istl-2.0.tar.gz

Alternatively, you can obtain a bleeding edge version from the DUNE subversion
repository:

svn checkout https://svn.dune-project.org/svn/dune-common/trunk dune-common
svn checkout https://svn.dune-project.org/svn/dune-grid/trunk dune-grid
svn checkout https://svn.dune-project.org/svn/dune-istl/trunk dune-istl

Download the latest (stable) release of DUNE-FEM from http://dune .mathematik.
uni-freiburg.de/download.html and unpack it to your DUNE directory. For ex-
ample:

tar -xzf dune-fem-1.1.tar.gz
tar -xzf dune-fem-howto-1.1.tar.gz

Alternatively, if you have read access to the DUNE-FEM svn archive, you can obtain
a bleeding edge version of DUNE-FEM as follows:

svn checkout https://dune.mathematik .uni-freiburg.de/svn/dune-fem/trunk dune
-fem

svn checkout https://dune.mathematik .uni-freiburg.de/svn/dune-femhowto/trunk
dune -fem-howto

3http://www.dune-project.org/doc/installation-notes.html

http://www.dune-project.org/download.html
http://www.dune-project.org/download.html
http://dune.mathematik.uni-freiburg.de/download.html
http://dune.mathematik.uni-freiburg.de/download.html
http://www.dune-project.org/doc/installation-notes.html

1 What is DUNE-FEM?

e Create a file named config.opts with the following content in your DUNE directory:

Listing 1 (File ../installation/config.opts)

Standard flags, used as default
STDFLAGS="-03,-Wall, -DNDEBUG_ ,-funroll -loops,-finline -functions"

Optimizing flags

The last option (-march=opteron) has to be adapted to your processor type
OPTIMFLAGS ="$STDFLAGS ,-fomit -frame -pointer -ffast-math,-mfpmath=sse -msse3\
Uuuuuuuuuuuu—march=opteron "

Debugging flags
DEBUGFLAGS="-g,-Wall"

Paths to installed modules

You have to adapt these paths if you are not part of the
Section of Applied Mathematics in Freiburg!
MODDIR="/hosts/raidb/aragorn/dune/modules/$HOSTTYPE /"
MODULEFLAGS ="--with-alberta=$MODDIR/alberta \
UuuuuuULuuuuu-—With-alugrid=$MODDIR/alugrid\
LuuLLLULLLLLLL -~ With-ug=$MODDIR /ugy,\
Luuuuuuuuuuuu—-—-X—-includes =/usr/X11R6/include)\
LuuuULLLLUUuu——X-1libraries=/usr/X11R6/1ib\
UuuLUUULLLUUUL——With-grape=$MODDIR/grape"

Choose the compiler
COMPILER_FLAGS="CXX=g++_,CC=gcc"

Choose CXXFLAGS from above ($STDFLAGS or $DEBUGFLAGS or $O0PTIMFLAGS)

Remove the option "--disable-documentation" if you want a local doxygen

documentation (takes quite some time to build).

CONFIGURE_FLAGS="--disable -~documentation,--disable -parallel $COMPILER_FLAGS,
\

Luuuuuuuuuuuuuuuu CXXFLAGS =\" $STDFLAGS \" ,$MODULEFLAGS"

MAKE_FLAGS =

Please consider this file as an example. It will work correctly only for members of
the Section of Applied Mathematics in Freiburg. Other users have to adapt (or
comment out) at least the paths to the external modules.

e Finally, configure und compile DUNE using the dunecontro1 script. Type the following
command in your DUNE directory:

./dune-common/bin/dunecontrol --opts=config.opts all

The script needs several minutes to finish.

1 What is DUNE-FEM?

Warning: Make sure your DUNE directory contains only one copy of each module.
Otherwise the dunecontro1l script will not work properly.

e Congratulations, you can start working, now.

You can find the above config.opts in the subdirectory doc/installation of the
DuNEe-FEM-HowTO module.

1.5 Create your own project

You can create your own DUNE project by using the duneproject script. Type the following
command in your DUNE directory and follow the instructions:

./dune -common/bin/duneproject

You will be asked the name of your project (the one you use later for dunecontro1) and
to give a list of DUNE modules your project should depend on - this information can be
modified later in the dune.module file within your project directory. You should at least
provide dune-common dune-geometry dune-grid dune-fem and including dune-fem-howto might also
be a good idea. This allows you to simply include all files found under dune/fem-howto
directly in your project, e.g.,

#include <dune/fem-howto/baseadaptive.hh>

as found in tutorial/poisson/mainadaptive.cc

After creating your project, you have to rerun the dunecontrol script to configure your
new module:

./dune-common/bin/dunecontrol --opts=config.opts --only=YOUR_MODULE_NAME all

Take a look in your new DUNE project directory. The duneproject script created a sample
source code file, which was compiled by dunecontrol.

You may replace the sample code with your own. If you want to add source code files,
remember to adapt Makefile.am as necessary. HEspeically if you want to base your code on
the examples from this tutorial, note the differences in the Makefile.am. Most importantly
we specifiy a default grid manager and dimension in our Makefile.am and this is not the
case for the basic make file found in the new project. Its best simply to add the lines

GRIDTYPE = YASPGRID
GRIDDIM = 2

1 What is DUNE-FEM?

into your Makefile.am as for example found in the gettingstarted example.

You can also create a new subdirectory either under src or directly in the main directory
of your project. In either case you have to add your new directory to the suspirs variable in
the Makefile.am of that directory and you will have to create a Makefile.am in the new direc-
tory. After also having modified your project’s contigure.ac, you have to rerun dunecontrol.
For more information on the build system, have a look at the DUNE Build SystemHowto
(http://www.dune-project.org/doc/buildsystem/buildsystem.pdf).

10

http://www.dune-project.org/doc/buildsystem/buildsystem.pdf

2 The Transport-Example with Dune-Fem

This chapter describes the implementation of a simple finite volume scheme for a hyper-
bolic problem in DUNE-FEM. As an example, we choose the following linear transport

problem:
Ju+a-Vu=0 inQx|[0,T),

U= Uy on Ly, (2.1)
u(-,0) =ug in Q,
where I';,, = {(x,t) € 92 x [0,T)|a-n(x) < 0} denotes the inflow boundary. In this
example, we choose the following problem data:

Q=10,1]", (2.2)
a=(1.25,08,...,0.8) € R", (2.3)
win(x,t) = sin 27|x — at|?, (2.4)
up(x) = sin 27|x|?. (2.5)
The exact solution to this problem is given by
u(x,t) :=sin 27|x — at|? for (x,t) € Q x [0,T). (2.6)

In this discussion, we will restrict ourselves to the case n = 2. The code, however, is
capable of handling arbitrary space dimension.

Change the file . ./parameters/parameter to work on different grids or in higher space
dimensions.

Note: In the current implementation, the values of a, ug, u;,, and u are hard-coded into
the file ../tutorial/finitevolume/problem.hh. You must implement a new version
of this file in order to use different problem data.

2.1 A Tiny Introduction to Finite Volume Schemes

In this section we will give some minimal mathematical background on finite volume
schemes and introduce the necessary notation, which will be used throughout this chap-

11

2 The Transport-Example with DUNE-FEM

ter. A rigorous introduction of finite volume schemes can, for example, be found in
[7].
For the time interval [0, 7], we introduce the decompisition

J={0=ty<..<ty=T}. (2.7)

Furthermore, we consider an unstructured grid 7j of €2. The elements of this grid are
numbered by (7;);e; with an index set I C Z. We introduce the notation

Si,j = Tz N T] (2.8)

for the intersection of 7; and T). For a finite volume scheme we need exactly the inter-
sections of codimension 1:

E:={(,j) € I*|0 < H"(S;;) < oo}, (2.9)

where H?¢ denotes the d-dimensional Hausdorff measure on R”™. We also introduce the
set of N (i) of neighbors of T;, defined by

N(Ty) = {j € 1](,)) € €} (2.10)
and the unit outer normal n; : 8T; — R< to Tj. Finally, we will need a numerical flux,
denoted by ¢ : R? x [0,T] x R x R x RY — R, with the following properties:
Consistency ¢g(x,t,u,u,n) = (au) - n,

Conservation g(x,t,u,v,n) = g(x,t,v,u,—n).

Using an explicit discretization for the timestep At,, = £, 41 —t,, the numerical treatment
of the problem results in

Aty
w =l - Y / 9%, ty uf' uf, (%)) A (%), (2.11)
Tl 3 Ny /s
1
ud = T /T up(x) dx (2.12)

Given these quantities, the numerical approximation wuj, of the exact solution is given by

up(x,t) :=wu; forxeT;and t € [ty,tnh41). (2.13)

12

363
364
365
366

2 The Transport-Example with DUNE-FEM

Notice that the scheme (2.11) can be interpreted as a forward Euler discretization of the
following semidiscrete scheme:

Opui(t) = — ul” jENZ(Ti) /S,-j g(x,t,ui(t), uj(t), ni(x)) d’]—[d—l(x) =: L;(t,u) (2.14)

1
u; (0) = T /E uo(x) dz (2.15)

Therefore, we will implement £;(¢,u) and use an ODE solver to solve (2.14). Of course,
we could also use an implicit Euler solver or a higher order Runge-Kutta solver.

2.2 Implementation overview

In this section we describe the source code of the finite volume example, located in the
directory dune-femhowto/tutorial/finitevolume. It consists of the following 2 source
files:

problem.hh contains the class UO representing the initial data 1y and the exact solution
u for the transport problem (2.1).

finitevolume.cc is the main source file (it contains the function main). It uses an
interface for a general algorithm for evolutionary problems, which can be found in
dune-fem-howto/dune/fem-howto/baseevolution.hh.

For the rest of this section we will discuss the main loop and the function evolve in detail.
The class U0 will not be of particular interest because it mostly contains functions to
evaluate u and ug and does not provide ingrediences which are crucial to the actual
algorithm.

2.2.1 The main function

We start by discussion the function main, displayed in Listing 2.

Listing 2 (Excerpt of dune-femhowto/tutorial/finitevolume/finitevolume.cc)

int main (int argc, char **argv)
try
{
typedef Dune::GridSelector::GridType GridType;

13

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

23
24
25
26
27
28
29
30
31
32
33

2 The Transport-Example with DUNE-FEM

// initialization
Dune::MPIManager ::initialize (argc, argv);
Dune::Parameter ::append (argc, argv);
Dune::Parameter ::append(argc >= 2 7 argv[1] : "parameter");
Dune::GridPtr < GridType > gridptr
= initialize< GridType >("Finite_ Volume, Scheme");
GridType &grid = *gridptr;
// EOC loop
Stepper < GridType > stepper (grid);
compute (stepper) ;
// dump parameters
Dune::Parameter ::write("parameter .log");
return 0;
}
catch(const Dune::Exception &e)
{
std::cerr << e << std::endl;
return 1;
}
catch (...)
{
std::cerr << "Genericpexception caught." << std::endl;
return 2;
}

First, we want to discuss the main programm in the file finitevolume.cc. As the basic
numerical scheme is delegated to the compute function, the problem specific code parts
can be found in the FiniteVolumeScheme and Stepper structs as can be seen in listing
3. An explanation of the most important lines in the struct definitions and the main
loop follows after the listing.

Listing 3 (Excerpt of dune-femhowto/tutorial/finitevolume/finitevolume.cc)

template< class DestinationType, class Problem >
struct FiniteVolumeScheme

: public Dune::SpaceOperatorInterface< DestinationType >
{
// type of discrete function space
typedef typename DestinationType::DiscreteFunctionSpaceType DiscreteSpaceType;
// type of grid part
typedef typename DiscreteSpaceType::GridPartType GridPartType;
// suitable iterator type over the codim 0 entities of the grid part

14

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

77
78
79
80
81

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

109
110
111

2 The Transport-Example with DUNE-FEM

typedef typename DiscreteSpaceType::IteratorType IteratorType;

// type of codim 0 entity and entity pointer
typedef typename IteratorType::Entity Entity;
typedef typename Entity::EntityPointer EntityPointer;

// type of geometry
typedef typename Entity::Geometry Geometry;

// type of intersections and intersection iterators

typedef typename GridPartType::IntersectionlIteratorType
IntersectionIteratorType;

typedef typename IntersectionlteratorType::Intersection IntersectionType;

// type of local function
typedef typename DestinationType::LocalFunctionType LocalFunctionType;

// return reference to space (mneeded by ode solvers)
const DiscreteSpaceType &space () const
{

return space_;

}

// initialize solution to initial data
void initialize (DestinationType &solution)
{
// iterate over all entities
const IteratorType end = space().end();
for(IteratorType it = space().begin(); it != end; ++it)
{
// obtain entity and geometry
const Entity &entity = *it;
const Geometry &geo = entity.geometry ();

// obtain local function
LocalFunctionType 1f = solution.localFunction(entity);

// evaluate initial data in element’s center
RangeType initialValue;
problem_.evaluate (geo.center (), initialValue);

// directly manipulate the only local DoF (degree of freedom)
1f[0 1 = initialValuel 0 1;
}

// communicate the data to other processes (for parallel runs only)
solution.communicate () ;

}

// application operator
void operator () (const DestinationType &solution,
DestinationType &update) const

15

2 The Transport-Example with DUNE-FEM

112 {

113 // clear update (i.e., initialize to zero)

114 update.clear () ;

115

116 // initialize time step to infinity

117 dt_ = std::numeric_limits < double >::infinity ();

118

119 // obtain grid part and indexr set references

120 const GridPartType &gridPart = space().gridPart ();

121 const typename GridPartType::IndexSetType &indexSet = gridPart.indexSet ();
122

123 // iterate over all entities

124 const IteratorType end = space().end();

125 for(IteratorType it = space().begin(); it != end; ++it)

126 {

127 // obtain entity and geometry

128 const Entity &entity = *it;

129 const Geometry &geo = entity.geometry ();

130

131 // assert CFL condition for quadrilateral grids

132 const double timeFactor = (geo.type().isCube() 7 0.5 : 1.0);
133

134 // obtain local functions for solution and update

135 LocalFunctionType 1fSolEn = solution.localFunction(entity);
136 LocalFunctionType 1fUpdEn = update.localFunction(entity);
137

138 // element volume

139 const double enVolume = geo.volume();

140

141 // iterate over all intersections

142 const IntersectionIteratorType iend = gridPart.iend(entity);
143 for (IntersectionIteratorType iit = gridPart.ibegin(entity);
144 iit != iemnd; ++iit)

145 {

146 // obtain intersection

147 const IntersectionType &intersection = *iit;

148

149 // obtain reference element for intersection

150 const ReferenceElementType &referenceElement

151 = ReferenceElementContainerType ::general (intersection.type());
152

153 // local coordinate of intersection’s barycenter

154 const FacelocalCoordinate &x = referenceElement.position(0, 0);
155

156 const double volumelntersection = referenceElement.volume ();
157

158 if (intersection.neighbor ())

159 {

160 // access mneighbor

161 const EntityPointer neighborPointer = intersection.outside ();
162 const Entity &neighbor = *neighborPointer;

163

164

16

2 The Transport-Example with DUNE-FEM

165 // compute fluz from one side only (except it’s mot an interior entity)

166 if ((neighbor .partitionType() != Dune::InteriorEntity)

167 || (indexSet .index (entity) < indexSet.index(neighbor)))

173 DomainType normal = intersection.integrationOuterNormal(x);

179 // obtain welocity

180 const DomainType &velocity = problem_.velocity ();

181

182 // calculate wave speed

183 const double waveSpeed = (velocity * normal) * volumelntersection;

184

185 // compute upwind numerical fluz

186 RangeType flux;

187 flux[0]

188 = (waveSpeed > 0 7 1fSolEn[O] : 1£fSolNb[0]) * waveSpeed;

189

190 // compute update for entity and neighbor

191 1fUpdEn[0] -= flux[O] / enVolume;

192 1fUpdNb[0] += flux[0] / nbVolume;

193

194 // compute time step restriction

195 const double dtLocal = timeFactor * std::min(enVolume, nbVolume) /
std::abs(waveSpeed);

196 dt_ = std::min(dt_, dtLocal);

197 }

198 }

199 else if(intersection.boundary ())

200 {

201 DomainType normal = intersection.integrationOuterNormal(x);

202

203 // obtain wvelocity

204 const DomainType &velocity = problem_.velocity();

205

206 // calculate wave speed

207 const double waveSpeed = (velocity * normal) * volumelntersection;

208

209 // compute upwind numerical fluz

210 RangeType flux;

211 if (waveSpeed < 0)

212 {

213 const DomainType xBnd

214 = geo.global (intersection.geometryInInside().global(x));

215

216 RangeType uBnd;

217 problem_.evaluate (time_, xBnd, uBnd);

218 flux[0] = uBnd[0] * waveSpeed;

219 }

220 else

221 flux[0 1] = 1£fSolEn[0] * waveSpeed;

222

223 // compute update for entity

224 1fUpdEn[0] -= flux[0 1 / enVolume;

17

225
226
227
228
229

231
232
233
234
235

2 The Transport-Example with DUNE-FEM

// compute time step restriction
const double dtLocal = timeFactor * enVolume / std::abs(waveSpeed
dt_ = std::min(dt_, dtLocal);

}

// communicate the data to other processes (for parallel runs only)
update .communicate () ;

257 template <class GridImp >
struct FVStepperTraits

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

288
289
290
291
292
293
294
295

297
298
299
300
301

{

// type of grid
typedef GridImp GridType;

// Initial data

//typedef UKGridType, Dune:: Double> InitialData ;
typedef UO<GridType, double> InitialData;

// Define the discrete function for the unkown solution

// ... first the grid part
typedef Dune::AdaptivelLeafGridPart <GridType> GridPartType;
// ... mext the function space

typedef Dune::FunctionSpace
<typename InitialData::DomainFieldType,
typename InitialData::RangeFieldType,
GridType::dimensionworld , InitialData::dimRange>
FunctionSpaceType;
J// ... followed by the discrete function space type
typedef Dune::FiniteVolumeSpace
< FunctionSpaceType , GridPartType, O, Dune::CachingStorage >
DiscreteSpaceType;
// ... and finally the type for the discrete function
typedef Dune::AdaptiveDiscreteFunction
< DiscreteSpaceType >
DiscreteFunctionType;

template <class GridImp >
struct Stepper : public AlgorithmBase < FVStepperTraits < GridImp > >

{

// my traits class

typedef FVStepperTraits < GridImp > Traits;
// base class

typedef AlgorithmBase< Traits > BaseType ;

// type of grid
typedef typename Traits :: GridType GridType;

// Initial data

typedef typename Traits :: InitialData InitialData;
// Define the discrete function for the unkown solution

18

);

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

328
329

331
332
333
334

336
337
338
339
340
341
342
343
344
345
346

2 The Transport-Example with DUNE-FEM

J// ... first the grid part

typedef typename Traits :: GridPartType GridPartType;

// ... followed by the discrete function space type

typedef typename Traits :: DiscreteSpaceType DiscreteSpaceType;

// ... and finally the type for the discrete function

typedef typename Traits :: DiscreteFunctionType DiscreteFunctionType;

// type of time provider
typedef typename BaseType :: TimeProviderType TimeProviderType;

Stepper (GridType& grid)
BaseType (grid),
problem_ (),
spaceSolver_(this->space(), problem_),
odeSolver_ (0),
eocId_(Dune::FemEoc::addEntry (std::string("Ll-error"))),
verbose_ (Dune::Parameter :: verbose())

// disctribute the grid to other processes (for parallel runs only)
grid.loadBalance ();
}

void initializeStep(TimeProviderType& tp, DiscreteFunctionType& u)
{
spaceSolver_.initialize (u);
odeSolver_ = new DuneODE::ExplicitRungeKuttaSolver<DiscreteFunctionType >(
spaceSolver_ ,tp,1);
odeSolver_->initialize (u);

void step(TimeProviderType& tp, DiscreteFunctionType& u) {
assert (odeSolver_);
odeSolver_->solve (u);

}

void finalizeStep(TimeProviderType& tp, DiscreteFunctionType& u) {
Dune::L1Error <DiscreteFunctionType > Llerr;
// Compute L1 error of discretized solution
typename InitialData::RangeType error;

error = Llerr.norm(problem_, u, tp.time());
// ... and print the statistics out to the eocOutputPath file
typename InitialData::RangeFieldType err = error.two_norm2 ();

Dune::FemEoc::setErrors (eocId_,sqrt(err));
delete odeSolver_;
odeSolver_ = 0;

We start with some general words about the structs FiniteVolumeScheme and Stepper.
FiniteVolumeScheme contains all necessary data and methods to calculate the spatial

discretization step of the numerical scheme, i.e., the update vector — ﬁ > JEN() gi"j (ul',u

19

n
J

)

2 The Transport-Example with DUNE-FEM

in 2.11. Stepper on the other hand realizes the calculation of a single timestep using an
ODE solver.

In the first few lines of the struct FiniteVolumeScheme several typedefs for the grid
type, the function spaces etc. are made. After that, the methods space, initialize
and operator () are defined.

The method space simply returns a reference to the instance of a discrete function space
that is used. It is invoked by the ODE solver.

The method initialize should be used to project the initial data to its discrete rep-
resentative DestinationType& u, which in this case is an AdaptiveDiscreteFunction.
The given implementation does a for-loop over all grid entities in line 88. For each en-
tity the given function wug is evaluated at the barycenter. As we calculate a piecewise
constant solution, the local function 1f contains just one degree of freedom, 1f[0]. A
deeper insight into the DOF handling is contained in chapter 3.

We now have a detailed look at the method operator (). As mentioned above, it
calculates the update vector regarding the numerical scheme, cf. (2.11). The work
mostly consists in calculating the numerical fluxes between the grid entities, so we start
with a for-loop over all grid entities in line 125. For the current entity entity, the lines
128-139 initialize some geometric information and the index of entity as well as the local
functions (with respect to entity) belonging to u and update. After that, another for-
loop iterates over all intersections, i.e., all edges, of entity. The lines 147-156 initialize
the intersection, its midpoint xIntersection and volume volumeIntersection.
Fach intersection can be either an interior or a boundary intersection. We start with
the interior ones, see line 158. In lines 161-163 an entity object neighbor and the
corresponding entity index are initialized. Due to the nature of the numerical fluxes we
need to calculate the flux between two entities 7; and T; only once. This is ensured
by the if-clause starting in line 166. After getting the outer normal of the intersection,
the numerical flux between entity and neighbor is calculated in lines 180-188. Here,
and Engquist-Osher flux is used. Due to the special form of the given problem, the
evaluation of the flux simplifies to the given code. At last we calculate the entity updates
and timestep restriction (according to a CFL condition).

The else part of the if-clause starts in line 199 and handles boundary intersections.
The code is basically the same as in the interior case. The only difference concerns the
handling of inflow boundaries. This is done in lines 212-219 where the exact solution u
of the problem is used to calculate the flux.

We now turn to the struct Stepper which provides the necessary data and methods for
calculating a single timestep. The first few lines of the definition contain several typedefs

20

2 The Transport-Example with DUNE-FEM

for the grid type, function spaces and initial data. After that, the methods initialize,
step and finalize are defined.

The method initialize uses spaceSolver_, an instance of FiniteVolumeScheme, to
initialize the solution vector u with the initial data. After that, an explicite ODE solver
odeSolver_ is defined and initialized.

The method step uses the ODE solver to calculate a single timestep for our prob-
lem. During this process, the ODE solver will execute the method operator () of the
FiniteVolumeScheme in order to evaluate the spatial discretization operator L£(u).

The method finalize calculates the L'-error between numerical and exact solution.
The error vector is then given to the Dune: :FemEoc singleton. This DUNE-class is used
to generate EOC data and stores these data in a .tex file. At last the method does
some clean-up work.

Finally we give some words about the main-loop. As most work is delegated to the
structs FiniteVolumeScheme and Stepper and the function compute, this code part
is kept rather short. In lines 36-77 the Dune: :Parameter singleton is used to process
certain runtime parameters. By default it is initialized with the parameter file. Other
choices can be made via commandline arguments. Some more information about Dune
: :Parameter will be given in the next subsection.

After that, in line 373 the method initialize from the file
dune-fem-howto/dune/fem-howto/base.hh is used to create the gridpointer. Finally,
in lines 379-380 a Stepper object is initialized and the method compute is invoked to
calculate the solution. The last few lines 387-396 do some runtime error catching.

2.2.2 The basic algorithm

As we have seen in the previous section, the struct Stepper is derived from
AlgorithmBase, which is an interface for an algorithm solving general evolutionary prob-
lems. It is located in dune-fem-howto/dune/fem-howto/baseevolution.hh. The most
important method of this interface is the operator (). A default implementation solv-
ing the evolutionary problem on the time interval [starttime, endtime] is given. We will
discuss all this in more detail after the following listing.

Listing 4 (Excerpt of dune-fem-howto/dune/fem-howto/baseevolution.hh)

36 template <class TraitsImp>
37 class AlgorithmBase

21

79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118

119

120

121
122
123
124
125
126

2 The Transport-Example with DUNE-FEM

//! return reference to space
DiscreteSpaceType& space ()

{

}

return

/)1 initi

a

/7!
e

the

Return true

space_;

alize grid, i.e. to start adaptation (overload to do something)

if grid should be adapted; this method is then called again on

new grid. Now that on the final grid, the data should be set in the method
initialize TimeStep ().

virtual bool initializeGrid(DiscreteFunctionType & solution) {return false;}

e

initialize method for time loop, i.e. L2—project initial data

virtual void initializeStep(TimeProviderType& tp,

//! solve ome time step
virtual void step(TimeProviderType& tp,
DiscreteFunctionType & solution) = 0;

//! finalize problem, i.e.
virtual void finalizeStep(TimeProviderType& tp,
DiscreteFunctionType & solution) = 0;

DiscreteFunctionType & solution) = 0;

calculate EOC

//! restore all data from check point (overload to do something)
virtual void restoreFromCheckPoint (TimeProviderType& tp,

DiscreteFunctionType & solution) {3}

//! write a check point (overload to do something)
virtual void writeCheckPoint(TimeProviderType& tp, DiscreteFunctionType &

solut

ion) const {}

//! default time loop implementation, overload for changes
virtual void operator () (DiscreteFunctionType & solution)

{

const bool verbose = Dune::Parameter :: verbose ();
ntCount = Dune::Parameter ::getValue<int>("femhowto.printCount", -1);

int pri

const double maxTimeStep
:Parameter :: getValue ("femhowto .maxTimeStep", std::numeric_limits <double

Dune:

>

tmax ());

const double startTime =

0.0);

const double endTime =

0.

// for

double
double
double

9);

statistics

maxdt = 0.;
mindt = 1.el10;
averagedt = 0.;

Dune::Parameter ::getValue<double >("femhowto .startTime

Dune::Parameter ::getValue<double >("femhowto .endTime",

22

127
128
129
130
131
132
133
134
135
136
137
138

140
141
142
143

173
174
175
176
177
178

202

2 The Transport-Example with DUNE-FEM

// Initialize TimeProvider
TimeProviderType tp(startTime, grid_);

RestrictionProlongationType rp(solution);

// set refine weight
rp.setFatherChildWeight (Dune::DGFGridInfo<GridType> :: refineWeight());

// create adaptation manager
AdaptationManagerType adaptManager(grid_ , rp);

// restoreData if checkpointing is enabled (default is disabled)
restoreFromCheckPoint (tp, solution);

// create data writer after restore is done, otherwise tp is not set correctly

I0TupleType dataTup (&solution);
DataWriterType eocDataOutput(grid_, dataTup, tp, EocDataOutputParameters (
loop_) J;

// adapt the grid to the initial data

int startCount = 0;
while (initializeGrid(solution))
{

eocDataOutput.write(tp);
adaptManager.adapt () ;
if (verbose)

std::cout << "start: " << startCount << ",gridgsize:, " << grid_.size (0)

<< std::endl;
++startCount ;

}
// set initial data (and create ode solver)
initializeStep(tp, solution);

// write initial data
eocDataOutput.write(tp);

[/ sk sk sk skt ok sk sk ok sk sk ok sk sk sk ok sk sk ok sk sk ok sk ok ok R sk ok sk ok ok sk ok sk ok ok sk ok ok ok ok
//* Time Loop *
[/ /s sk s sk sk ok sk sk sk s sk sk ok sk sk sk s sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk ok sk sk sk sk sk ke sk sk ok ok
tp.provideTimeStepEstimate (maxTimeStep) ;
for(tp.init() ; tp.time() < endTime ; tp.next())
{

tp.provideTimeStepEstimate (maxTimeStep);

[/ /o sk sk sk sk ok sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk ok sk ok ok sk ok sk ok sk sk ok ok ok ok

//% Compute an ODE timestep *

/s sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk ok ok ok
Dune::FemTimer ::start(timeStepTimer_);

step(tp, solution);

Dune::FemTimer ::stop(timeStepTimer_ ,Dune::FemTimer ::max) ;

eocDataQutput.write(tp);

23

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

2 The Transport-Example with DUNE-FEM

} Jksxxxx END of time loop skkkx/

averagedt /= double (tp.timeStep ());
if (verbose)
{
std::cout << "Minimum dt:_ " << mindt
<< "\nMaximum_ dt:_ " << maxdt
<< "\nAverage_ dt:, " << averagedt << std::endl;

}

// finalize time step
finalizeStep(tp, solution);

// increase loop counter
++loop_;

}

//! finalize problem, i.e. calculated EOC ...
virtual void finalize (DiscreteFunctionType & solution)

{3}

protected:
GridType& grid_;
GridPartType gridPart_;
DiscreteSpaceType space_;

unsigned int timeStepTimer_;
unsigned int loop_ ;

};

After the declaration of the AlgorithmBase class a few typedefs are made. Because
these are just plain forwardings from the given TraitsImp class this part is excluded
from the listing. The most relevant code parts are the virtual methods initializeStep,
step, finalizeStep and operator (). As the first three of them are implemented by
the Stepper class as seen in the last section, we just need to give some explanation to
the last one.

As mentioned prior to the listing, operator () gets a default implementation computing
the solution of the underlying evolutionary problem within the time interval [starttime,
endtime]. We will discuss this code now.

The first few lines define some important parameters like start- and endtime. In order
to calculate the numerical solution, an instance of a TimeProviderType is needed (line
128). This object is used by the ODE solver and within time loop. Amongst others
it provides time step estimates and ensures a CFL number to be granted. With this
TimeProvider we can set the initial data using the method initializeStep, cf. line
157.

24

31
32
33
34
35

36

37
38
39
40
41
42
43
44
45
46
47
48

2 The Transport-Example with DUNE-FEM

The lines ?7-7?7 define and initialize two datatypes. The first one is I0TupleType that is
used to store some pointers to discrete functions in. The second one is DataOutputType

It gets a grid and an I0TupleType to create some output, e.g. for visualizing the
calculated solution in Paraview. In this example only the (discrete) solution w is used
as output.

Within the time loop at first an time step estimate is needed. This is followed by
starting the FemTimer. This is a DUNE-FEM singleton that provides means to measure
the calculation time of the algorithm. After that the next time step is calculated using
the step method (line 177). Remember that this method is implemented within the
Stepper struct. As mentioned above this invokes an ODE solver to solve dyu = L(u)
where the operator £ on the right hand side is given by the operator () method of the
FiniteVolumeScheme struct. When this is done the timer is stopped, some EOC output
and additional statistical data are generated. This finishes the time loop.

After the time loop the finalize method of the Stepper struct is called in line 222.

2.2.3 The methods initialize and compute

As mentioned earlier we also use two functions which are contained within the header file
dune-fem-howto/dune/fem-howto/base.hh, namely initialize and compute. Both
functions will be discussed after the listing.

Listing 5 (Excerpt of dune-fem-howto/dune/fem-howto/base.hh)

template< class HGridType >
Dune::GridPtr < HGridType > initialize (const std::string &problemDescription)

{

/) — read in runtime parameters

const std::string filekey = Dune::IO0Interface::defaultGridKey(HGridType::
dimension);

const std::string filename = Dune::Parameter ::getValue< std::string >(filekey)

B

// initialize grid

Dune::GridPtr < HGridType > gridptr (filename) ;
gridptr ->loadBalance () ;

Dune::Parameter ::appendDGF (filename);

// initialize FemFoc
initializeFemEoc (problemDescription);

// and refine the grid until the startLevel is reached

const int startLevel = Dune::Parameter::getValue<int>("femhowto.startLevel", 0);
for (int level=0; level < startLevel ; ++level)

25

49
50
51
52

2 The Transport-Example with DUNE-FEM

gridptr ->globalRefine(1);

return gridptr;

}

59 template <class Algorithm>
60 void compute (Algorithm& algorithm)

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

{

typedef typename Algorithm::DiscreteFunctionType DiscreteFunctionType;
:DiscreteSpaceType& space = algorithm.space();
:GridPartType& gridPart = space.gridPart ();
:GridPartType::GridType HGridType;

typename Algorithm:
typename Algorithm:
typedef typename Algorithm:

HGridType& grid = gridPart.grid();

// solution function
DiscreteFunctionType u("solution",space);

// get some parameters

const int eocSteps = Dune::Parameter:

// Initialize

// format readable by e.g. Paraview
// in each loop for the eoc computation the results at
// the final time is stored
typedef Dune::tuple< DiscreteFunctionType* > IOTupleType;

typedef Dune::DataWriter <HGridType,

I0TupleType dataTup (&u);

DataOutputType dataOutput (grid,

const unsigned int femTimerId = Dune::
for (int eocloop=0; eocloop < eocSteps;

{

Dune::FemTimer :: start(femTimerId);

// do one step
algorithm (u);

the DataOutput that writes the solution on the harddisk

I0TupleType > DataOutputType;

dataTup);

FemTimer ::addTo("timestep");
++eocloop)

double runTime = Dune::FemTimer ::stop(femTimerId) ;

Dune::FemTimer ::printFile ("./timer.out");

Dune::FemTimer ::reset (femTimerId);

// Write solution to hd
dataOutput .writeData (eocloop);

// finalize algorithm (compute errors)

algorithm.finalize (u);

// calculate grid width

const double h = Dune::GridWidth::calcGridWidth(gridPart);

if (Dune::Parameter :: verbose ())
Dune::FemEoc::write(h,grid.size (0)

,runTime ,0, std::cout);

26

in

:getValue<int >("femhowto .eocSteps",

a

1)

107
108
109
110
111
112
113
114

115
116
117
118
119

2 The Transport-Example with DUNE-FEM

else
Dune::FemEoc::write(h,grid.size (0) ,runTime ,0) ;

// Refine the grid for the next EOC Step. If the scheme uses adaptation
// the refinement level needs to be set in the algorithms’ initialize method.
if (eocloop < eocSteps-1)
{
Dune::GlobalRefine::apply(grid,Dune::DGFGridInfo <HGridType >::
refineStepsForHalf ());
grid.loadBalance () ;
¥
} /xxxxx END of EOC Loop %%/
Dune::FemTimer :: removeAll () ;

}

First we discuss the method initialize. The Dune: :Parameter singleton parses the
given parameter file line by line. A parameter line must have the format <key>: <
value>. Whilst <key> must be an alphanumerical string, <value> can contain strings
or numbers. Lines starting with a # are understood as commentaries. The lines 36-
7?7 show you how to work with Dune: :Parameter. Have a look at the most important
methods of Dune: :Parameter:

e get expects three parameter. The first one is a std::string representing the
<key>. The second one is a reference to the variable where the related <value>
will be stored. The third one is a default value that will be used if the key cannot
be found. This last parameter is optional.

e getValue works similar to get. The difference is that the value is not stored
in a reference but returned by the method. Thats why getValue has only two
parameters: The key as std: :string and an optional default value.

In line 77 the Dune: :FemEoc singleton is initialized with the path for a .tex file where the
EOC data will be stored in. Finally the apply method from the Dune: :GlobalRefine
singleton is used in line 77 to do a given number of initial refinements on the grid.

Now we have a look at the compute method which produces EOC data for the evolu-
tionary problem represented by the given instance of Algorithm, cf. the AlgorithmBase
interface from the last subsection. The first few lines do some typedefs and define some
important variables like the grid, the discrete solution u etc. After that the Dune::
FemTimer singleton is used to create a new timer for measuring the runtime needed for
solving the given problem. The variable timeStepTimer is the id of the created timer.

Finally, the EOC loop starts is started doing a given number of EOC steps. For each
step the complete (discrete) numerical solution w is calculated using the given algorithm

27

2 The Transport-Example with DUNE-FEM

(line 89). After the solution is calculated the runtime is measured, written out to a file
./timer.out and the timer is reset for the next loop. In line 222 the finalize method
of algorithm struct is called. At last, in line 114 the grid is globally refined for the next
EOC step using the same technique as in the initialize method.

2.3 Parallelization

The parallelization of this example is very easy. Here, we show the few lines of code that
differ from the serial algorithm. The first step in each parallel code is to distribute the
grid to all processes available. This is done by calling grid.loadBalance() in line 321
of Listing 3.

During the execution of the algorithm we need to adjust three things. After setting the
initial data we have to invoke a communication that updates all non-interior entities
on each process. This is done by simply calling solution.communicate() in line 106
in Listing 3. In the same way the flux update is communicated by calling update.
communicate() in line 234 of Listing 3. Note that during the flux calculation we have
to make sure that the flux is calculated when the neighbor is not an interior entity, see
line 166 of Listing 3.

The synchronization of the time step size is done automatically by the TimeProvider
class.

In order to start the program finitevolume on two processors, type

mpiexec -n 2 ./finitevolume

at the command line. Make sure that all DUNE modules were configured with the option
--enable-parallel.

Please read also Section 3.3.

28

3 Solving the Poisson problem

In this chapter we want to show how to use DUNE-FEM for solving an elliptic test
problem with the Finite Element method. As a test problem, we choose the Poisson
problem

—Au=f inQcRI=23 (3.1)
u=g on Jf.
The source code of the implementation described in this chapter is located in the di-

rectory dune-femhowto/tutorial/poisson. In this example, we choose the following
problem data (with n = dimworld):

Q:=|0,1[", X = (T, ..., Tp) (3.3)
f(x) := dnr? ﬁ sin(27x;) VxeQ (3.4)
i=1
u(x) == Hsin(27r:r3@-) Vxel (3.5)
1=1
9(x) = u(x) vV x €0 (3.6)

where u is the exact solution. The boundary values are just the values of the exact
solution on the boundary points.

In the current implementation we implemented several alternative right hand side func-
tions f und corresponding exact solutions u for the problem (3.1) (see problemdata.hh).
You can switch between them by changing the runtime parameter
femhowto.poissonproblem in the parameter file parameter.

The numerical treatment of problem (3.1) is described in chapter 1 of the script [8]. The
numerical discussion ends with the equation system

Au=Db (3.7)

29

3 Solving the Poisson problem

that needs to be solved by the numerical scheme for the unknown discrete function
u € Vj,, where Vj, € H}(€) is a suitable discrete function space with a basis {¢1, -+ , N }.
The right hand side b is given by

b:= (f%’)gig]v . (3.8)

Except boundary corrections the matrix A equals the stiffness matrix

S = </ Vgijg0i> . (3.9)
Q 1<i,j<N

The degrees of freedom (DOFs), that lie on the boundary 02 however, are defined by
the values of the boundary data function g. Therefore, for matrix A the corresponding
rows in the stiffness matrix need to be substituted by a unit vector such that for the i—th
DOF u; of the discrete solution u we ensure u; = g(p;), where p; is the node coordinate
corresponding to the DOF. Schematically, the substitution in the stiffness matrix S looks
like this:

¢—><0.--010---0> u 9(1}1') (3.10)

3.1 Implementation

We first describe the basic implementation of the algorithm without adaptive or parallel
calulations. Adaptive and parallel calulations will be the topic of the sections 3.2 and
3.3, respectively. The basic implementation consists of the following source files:

e main.hh: Contains the main function. The algorithm first initializes the problem
data (implemented in the file problemdata.hh) and then calls the main algorithm
(implemented in the file algorithm.hh). We utilize here the function compute from
the header file dune/fem-howto/base.hh, which is an abstract implementation of
a numerical scheme for stationary problems.

e problemdata.hh: Contains several classes which implement several right hand
side functions f and the corresponding exact solutions u for the problem 3.1. The
actual problem class is chosen at runtime, see the parameter file parameter. In

30

3 Solving the Poisson problem

cases where an exact solution is available we use it as Dirichlet boundary data
(see class Algorithm in the file algorithm.hh), so there is no need to explicitly
implement the boundary data g.

e algorithm.hh: Contains a class Algorithm which provides the main algorithm.
This algorithm is described in section 3.1.1 in detail.

e laplaceoperator.hh: Contains the classes
LaplaceOperator and RightHandSideAssembler which model the discrete stiff-
ness matrix A with entries for DOFs on the region’s boundary and the discrete
right hand side b as described in the last section. The implementation of the right
hand side will be the topic of section 3.1.2.

3.1.1 Algorithm

We begin with the main function in the file main.hh, see Listing 6. We delegated the basic
numerical scheme to the compute function in the file dune/fem-howto/base.hh, the
problem specific code parts are implemented in the class Algorithm (described below),
so the main function is rather short.

Listing 6 (Excerpt of dune-femhowto/tutorial/poisson/main.cc)

63 int main(int argc, char **argv)

64 {

65 typedef Dune::GridSelector::GridType HGridType;
66

67 // initialize MPI

68 Dune::MPIManager ::initialize (argc, argv);

69 const int rank = Dune::MPIManager ::rank ();

70

71 try

72 {

73 // append parameters from the comand line

74 Dune::Parameter ::append (argc, argv);

75

76 // append parameters from the parameter file

77 Dune::Parameter ::append ((argc < 2) ? "parameter" : argv[1 1);
78

79 // generate GridPointer holding grid instance

80 Dune::GridPtr < HGridType > gridptr = initialize< HGridType >(std::string("

Poisson problem"));
81

82 // get grid reference

83 HGridType& grid = *gridptr ;
84

85 // create problem

31

3 Solving the Poisson problem

86 ProblemType * problem = Dune::createProblem<HGridType> ();
87 assert (problem);

88

89 // create stepper class

90 Algorithm<HGridType, polynomialOrder > algorithm (grid, *problem);
91 // compute solution

92 compute (algorithm) ;

93

94 // write parameter logfile

95 Dune::Parameter :: write("parameter.log");
96

97 // remove problem

98 delete problem;

99

100 return O;

101 }

102 catch(const Dune::Exception &exception)
103 {

104 if (rank == 0)

105 std::cerr << exception << std::endl;

106 return 1;

107}

108 }

After initializing the grid in line 80, we get an instance of a class containing the problem
data (line 86) and an instance of the class Algorithm, containing the algorithm. After
that, the function compute is executed in line 92. The function compute, defined in the
file dune/fem-howto/base.hh, calls the operator() routine from the class Algorithm
several times at different grid sizes and the experimental order of convergence is com-
puted.

Now, we are going to explain the problem specific algorithm in the class Algorithm, see
Listing 7. An explanation of the most important lines in the class definition follows after
the listing.

Listing 7 (Excerpt of dune-femhowto/tutorial /poisson/algorithm.hh)

108 class Algorithm
109 {
110 public:

180 //! constructor

181 Algorithm (HGridType & grid, const ProblemType& problem)
182 : grid_(grid),

183 gridPart_(grid_),

184 space_(gridPart_),
185 problem_ (problem)
186 {

32

187
188
189
190
191

198
199
200
201
202

212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

240
241
242
243
244
245
246
247
248
249
250
251

3 Solving the Poisson problem

// add entries to eoc calculation
std::vector<std::string> femEocHeaders;

// we want to calculate L2 and HI1 error (and EOC)

femEocHeaders.push_back ("$L"2$-error");
femEocHeaders.push_back ("$H 1$-error");

}

//! setup and solve the linear system
void operator () (DiscreteFunctionType & solution)

{

// initialize solution with zero
solution.clear ();

// create laplace assembler (is assembled on call of systemMatriz by solver)

LaplaceOperatorType laplace(space_ , problem_

// functional describing the right hand side

typedef Dune::IntegralFunctional < ProblemType,
FunctionalType ;

FunctionalType rhsFunctional(problem_);

Dune::DirichletConstraints < DiscreteSpaceType,
constraints (space_, problem_);

)

DiscreteFunctionType >

ProblemType >

Dune::NeumannConstraints < DiscreteSpaceType , ProblemType >

neumann (space_, problem_);

// solve the linear system @\ref{

solve (laplace, rhsFunctional, solution , constraints, neumann);

}

//! finalize computation by calculating errors and EOCs

void finalize (DiscreteFunctionType & solution)
{

// create exact solution

ExactSolutionType uexact(problem_);

// create grid function adapter
GridExactSolutionType ugrid("exactysolution",
DiscreteSpaceType

// create L2 — Norm

Dune::L2Norm< GridPartType > 12norm(gridPart_
// calculate L2 — Norm

const double 1l2error = 1l2norm.distance (ugrid,

// create HI — Norm

Dune::H1Norm< GridPartType > hinorm(gridPart_
// calculate H1 — Norm

const double hlerror = hlnorm.distance (ugrid,

33

uexact , gridPart_,
polynomialOrder + 1);

)

solution);

)

solution);

252
253
254
255
256

258
259
260
261
262

264
265
266
267

269
270
271
272
273
274

300
301
302
303
304

312
313
314
315
316
317
318
319
320

3 Solving the Poisson problem

// store walues

std::vector <double > errors;
errors.push_back (1l2error);
errors.push_back (hlerror);

// submit error to the FEM EOC calculator
Dune::FemEoc :: setErrors (eocId_, errors);

}

//! return reference to discrete space
DiscreteSpaceType & space() { return space_; }

private:
//! solve the resulting linear system
template <class FunctionalType,
class Constraints,
class Neumann >
void solve (LaplaceOperatorType &laplace,
const FunctionalType& functional,
DiscreteFunctionType &solution,
const Constraints& constraints,
const Neumann& neumann)

// create inverse operator (mote reduction is not used here)
InverseOperatorType cg(laplace, reduction, solverEps);

// solve the system
cg(rhs, solution);

}

protected:
HGridType& grid_; // reference to grid, i.e. the hierarchical grid
GridPartType gridPart_; // reference to grid part, i.e. the leaf grid
DiscreteSpaceType space_; // the discrete function space
const ProblemType& problem_; // the problem data
int eocId_; // id for FemEOC

};

The definition of the class Algorithm starts with some typedefs (not printed here) defin-
ing the grid type, the function spaces and discrete functions, the Laplace operator and
a solver for linear systems. Furthermore, the constructor and the methods operator(),
finalize, and space need to be defined. The methods operator() and finalize are
evaluated by the compute function in this order every time a new numerical solution
needs to be computed. The method operator() should be used for the implementation
of the actual numerical scheme, while the constructor and the method finalize can be
used for pre- respectively post-processing.

34

21
22
23
24
25
26
27
28

104

3 Solving the Poisson problem

In this example, operator() initializes the Laplace operator A from equation (3.7) in
line 216, the right hand side function b in lines ?7-223, and finally solves the linear
equation system for the unknown discrete function u in line 229. This line executes the
private method solve initializing a CG Solver in line 301 and executing it in line 304.

After the solution step is executed, we compute the L? and the H' error between the
exact and the discrete solution in the finalize method. The method space simply
returns a reference to the instance of a discrete function space.

To change certain runtime parameters the user needs to edit the file parameter in
the directory dune-femhowto/tutorial/poisson/ or the file parameter in the direc-
tory dune-femhowto/tutorial/base/. These parameter are processed by the Dune: :
Parameter singleton which can be accessed anywhere in the program.

The initial grid size can be manipulated by the femhowto.startLevel parameter in-
dicating the number of refinement steps that are executed on the grid before the first
numerical solution gets computed. The parameter femhowto.eocSteps then controls
the number of subsequent EOC computations. The compute function makes use of the
Dune-FEM utility classes FemEOC and FemTimer which write nicely formatted output
information on the evolution of the EOC error and the elapsed time of computations to
the files eoc_main.tex and timer.out.

3.1.2 Assembling the Laplace operator

The assembling of the Laplace operator A and the right hand side b from the equation
(3.7) is done in the file laplaceoperator.hh. The important parts of the operator im-
plementation are shown in listing 8. After the listing we are going to elaborate on certain
concepts of DUNE-FEM like numerical integration that are used in these algorithms for
the assembling of A.

Listing 8 (Excerpt of dune-femhowto/tutorial /poisson/laplaceoperator.hh)

template< class DiscreteFunction, class MatrixTraits >
class LaplaceOperator
: public Operator< typename DiscreteFunction::RangeFieldType,
typename DiscreteFunction::RangeFieldType,
DiscreteFunction,
DiscreteFunction >,
public OEMSolver ::PreconditionlInterface

{

public:

35

105
106
107
108
109
110

149
150
151
152
153
154
155
156
157

159
160
161
162
163
164

166

171
172
173
174
175
176
177

179
180
181
182
183
184

186

187
188
189
190
191
192
193
194
195
196

3 Solving the Poisson problem

//! apply the operator

virtual void operator () (const DiscreteFunctionType &u,
DiscreteFunctionType &w) const

// if stored sequence number it mnot equal to the one of the
// dofManager (or space) then the grid has been changed

{
systemMatrix () .apply(u, w);
}
LinearOperatorType &systemMatrix () const
{
// and matriz has to be assembled new
if (sequence_ != dofManager_.sequence ())
assemble () ;
return linearOperator_;
}

/% \ brief perform a grid walkthrough and assemble the global matriz x/

void assemble () const

{

const DiscreteFunctionSpaceType &space

// reserve memory for matrix
linearOperator_.reserve () ;

// clear matriz
linearOperator_.clear();

discreteFunctionSpace () ;

// apply local matriz assembler on each element
typedef typename DiscreteFunctionSpaceType

IteratorType end = space.end();

for(IteratorType it = space.begin();

{
assembleLocal(*it);

}

// get elapsed time

it

IteratorType IteratorType;

end; ++it)

const double assemblyTime = timer.elapsed();

// in wverbose mode print times
if (Parameter verbose ())

std :: cout << "Timegtoyassemblematrix:, " << assemblyTime <<

endl;

// get grid sequence number from space (for adaptive runs)
sequence_ = dofManager_ .sequence ();

}

protected:

//! assemble local matriz for given entity

template< class EntityType >

void assemblelLocal(const EntityType &entity) const

{

36

ngn

<< std

197
198
199
200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236

238
239
240
241
242
243
244
245
246
247
248
249

3 Solving the Poisson problem

// extract type of geometry from entity
typedef typename EntityType :: Geometry Geometry;

// assert that matriz is not build on ghost elements
assert (entity.partitionType() != GhostEntity);

// cache geometry of entity
const Geometry &geometry = entity.geometry ();

// get local matriz from matriz object
LocalMatrixType localMatrix
= linearOperator_.localMatrix (entity, entity);

// get base function set
const BaseFunctionSetType &baseSet = localMatrix.domainBaseFunctionSet ();

// get number of local base functions
const std::size_t numBaseFunctions = baseSet.size();

// create quadrature of appropriate order
QuadratureType quadrature (entity, 2 * (polynomialOrder - 1));

// loop owver all quadrature points
const size_t numQuadraturePoints = quadrature .nop();
for(size_t pt = 0; pt < numQuadraturePoints; ++pt)
{
// get local coordinate of quadrature point
const typename QuadratureType :: CoordinateType &x
= quadrature .point(pt);

// get jacobian inverse transposed
const typename Geometry :: Jacobian& inv
= geometry.jacobianInverseTransposed(x);

// extract type of diffusion coefficient from problem
typedef typename ProblemType :: DiffusionMatrixType DiffusionMatrixType;
DiffusionMatrixType K;

// evaluate diffusion matriz
problem () .K(geometry.global(x), K);

// for all base functions evaluate the gradient

// on quadrature point pt and apply jacobian inverse
baseSet . jacobianAll (quadrature[pt], inv, gradCache_);

// apply diffusion tensor
for(size_t i = 0; i < numBaseFunctions; ++i)

K.mv(gradCache_[i 1[0 1, gradDiffusion_[i 1[0 1);

// evaluate integration weight
weight_ = quadrature .weight (pt) * geometry.integrationElement(x);

// add scalar product of gradients to local matriz

37

250
251
252
253
254

256
257
258
259
260
261
262
263
264
265
266
267
268

286

3 Solving the Poisson problem

updateLocalMatrix(localMatrix);
}
}

//! add scalar product of cached gradients to local matrizc
void updateLocalMatrix (LocalMatrixType &localMatrix) const
{
const size_t rows = localMatrix .rows () ;
const size_t columns = localMatrix.columns () ;
for(size_t row = 0; row < rows; ++row)
{
for (size_t col = 0; col < columns; ++col)
{
const RangeFieldType value
= weight_ * (gradCache_[row][0] * gradDiffusion_[col 1[0 1);
localMatrix .add(row, col, value);
}
}
}

};

The class LaplaceOperator is derived from the Dune: :Operator class. This is why we
need to override the operator() method. In line 109 this method delegates the work to
the evaluate method of the underlying system matrix. Note that the system matrix is
accessed through a call to the systemMatrix method. This method first checks in line 154
whether the grid and therefore the container storing the function’s DOFs were changed
since the last assembling of the system matrix. This is done with help of the integer
variable dofManager_.sequence which gets incremented each time the grid changes
because of an adaptation or global refinement step. In case it does not equal the private
member sequence_, the system matrix is invalid and gets updated by the assemble
method. This method does a grid traversal and calls the method assembleLocal on
each element in line 179.

Local degrees of freedom

We denote by I(T) := {i € {1,...,N} | ¢i|r # 0} the set of all DOF indices with
corresponding basefunctions that have positive support on the grid entity 7" € 7. Then
the DOFs vZ; := v,r(k) are called the local degrees of freedom on the grid entity T for
k=1,...,|[(T)|, where u” : {1,...,|I(T)|} — I(T) is an enumeration of I(T"). For the
full concept of local degrees of freedom we refer to [5, Definition 20] (see also [6]).

38

3 Solving the Poisson problem

With this notation the LocalMatrix that is retrieved in line 207 can now be read as a
matrix LT € RIM>I(D| with matrix entries

(L7),; = Ayryury» 1 <i,5 < [I(T)). (3.11)

)

Note, that changes in the local matrix also affect the corresponding entries in the system
matrix A.

In order to assemble this local matrix on every grid entity 7', we need the base functions
corresponding to the local degrees of freedom on the entity. In line 211 we retrieve a so-
called BaseFunctionSet that consists of all base functions ¢,), roe s PuT(I(D))) living
on the reference element 7. Together with the reference mapping ®7 : T — T we get
the wanted base functions ¢, r ;) = ®(p,r(;) for i =1,... [I(T)|.

Quadrature

The DUNE-FEM quadrature object which is initialized in line 217 gives us quadrature
points :?3(7; and associated weights wg for g =1,...,Q7, such that we can compute the
stiffness matrix entries

(3.12)
~ZwTwz)V @i(Eg) DO .

A complete definition is given in [5, Definition 14] (see also [6]). Note that the quadrature
points are given in local coordinates on the reference element 7. In order to convert
them into global coordinates, we had to use the global method from the Geometry
class. For more details, see the DUNE-FEM documentation [2] at the module page [3]
for quadratures.

3.1.3 Boundary treatment
After the assembling of the stiffness matrix S (section 3.1.2), the matrix entries for

boundary DOFs have to be updated according to (3.10). This is done in the class
method boundaryCorrectOnGrid which is not printed in this document.

39

3 Solving the Poisson problem

3.1.4 Assembling the right hand side

The class RightHandSideAssembler in the file laplaceoperator.hh (not printed in this
document) assembles the right hand side discrete function and is implemented analo-
gously to the LaplaceOperator (see section 3.1.2). Instead of a local matrix it uses a
local function.

3.2 Adaptation

To perform adaptive calculations, only very few things have to be added to the basic
implementation as described in section 3.1. Most of the work is already done! We
give a short overview over the involved files and highlight the differences to the basic
implementation from section 3.1.

e mainadaptive.hh: Contains the main function. Mainly the same as the main func-
tion in main.hh (see section 3.1), but it calls the adaptive algorithm implemented
in the file algorithmadaptive.hh.

e algorithmadaptive.hh: Contains a class AdaptiveAlgorithm which provides
the main algorithm. The class AdaptiveAlgorithm is derived from the class
Algorithm (see section 3.1.1) and simply provides an additional method
estimateAndMark. This method marks grid elements for refining/coarsening based
on the results of an error estimator (implemented in the file estimator.hh).

e estimator.hh contains a class Estimator which provides an a-posteriori error
estimator for the numerical solution. The estimator is utilized by the adaptive
scheme.

Furthermore, we want to emphasize that the classes defining the problem data (in
file problemdata.hh, see section 3.1), the class Algorithm (in file algorithm.hh, see
section 3.1.1) and the classes LaplaceOperator and RightHandSideAssembler (in file
laplaceoperator.hh, see section 3.1.2) are used in the adaptive calculations without
any changes in code.

Important: You have to use an adaptive grid (for example AlbertaGrid or ALUGrid
with conforming refinement) for performing adaptive calculations. Non-adaptive grids
(like the default(!) YaspGrid) will work, but result in nonadaptive calculations.

The program refines the grid until the error drops beneath the bound given by femhowto
.tolerance in the parameter file.

40

3 Solving the Poisson problem

3.3 Parallelization

The Makefile in the the directory examples/poisson it produces two executables:
poisson and adaptive. The first one is compiled with additional $ (DUNEMPICPPFLAGS)
as can be seen in line 18 of Makefile.am and therefore allows parallel execution on many
processors, if the used grid implementation supports parallelization. At the moment this
applies to ALUSimplexGrid and ALUCubeGrid for 3 dimensional problems and YaspGrid
and UGGrid for 2 and 3 dimensional problems.

Note: The YaspGrid implementation does not include any routines for repartitioning
of the grid, thus the initial domain decomposition is fixed during the hole computa-
tion. For ALUSimplexGrid and ALUCubeGrid the partitioning can be adapted by calling
the method loadBalance of the grid. This only has to be used in adaptive parallel
computations.

Note: Adaptive and parallel computations of the Poisson problem are currently not
possible with the implementation of the Poisson solver, because of the following reasons:

e YaspGrid is not capable of local grid adaptation,

e although UG would be capable of local adaptation in parallel the DUNE-GRID in-
terface implementation UGGrid does not support this feature completely yet, and

e ALUSimplexGrid and ALUCubeGrid produce hanging nodes during local refinement
and the Poisson solver is not able to handle those. For discretizations with discon-
tinuous basis functions this is not a problem at all, see Chapter 4.

Parallel computations for this problem without local grid adaptivity are very well pos-
sible.

In order to start the program poisson on two processors, type

mpiexec -n 2 ./poisson

at the command line.

When the grid gets initialized in line 80, for each process only a partition of the grid
is returned. The partitioning is done automatically. At some steps of the algorithm,
however, the processes need to interact and exchange their computed results. In order
to understand how DUNE handles communication at the boundary of grid partitions,
the reader should be familiar with concepts like ghost cells and overlap cells. This
is, for example, described in [5, Section 3.2]. An other introduction can be found in

41

3 Solving the Poisson problem

the chapter on parallelization of the dune-grid-howto [4]. Most times the DUNE-FEM
CommunicationManager handles code parts where communication is needed automat-
ically, for example, the call discreteFunction.communicate() on a discrete function
object does the appropriate communication according to the discrete function space.
But sometimes things get more complicated.

We want to explain one of these complicated communication routines and therefore have
a deeper look at the boundaryCorrectOnEntity method in listing 8. When the system
matrix A gets assembled, only the DOFs on the boundary between two partitions, i.e.
the DOF's on the border of a partition need to be communicated. After the assembling
of the stiffness matrix also the DOFs on the overlap respectively in ghost cells are set
on each partition.

After the partitioning of the grid, some vertices lie on more than one grid partition. For
the final discrete function living on the entire grid, the contributions of the different
processes to the DOFs corresponding to these vertices are added up. For Dirichlet
boundaries this leads to problems, because a global evaluation of the discrete function
at the vertices would result in twice the expected value. Therefore, in lines 77-77 the
lines of the system matrix corresponding to these DOFs are set to the zero vector for
all but one so-called “master” process. The selection of the matrix lines that need to be
erased is quite easy because of the SlaveDof concept. All DOFs that are duplicated on a
grid partition with a lesser process number than the current process, are automatically
marked as SlaveDofs. In lines 77-77 we can see how a SlaveDof container can be
constructed for discrete function spaces on each grid partition with the help of the class
SlaveDofsProviderType, i.e. a SingletonList, and how such a container is updated
by the rebuild method.

42

4 An LDG solver for Advection-Diffusion Equations

This chapter introduces the Pass concept in DUNE-FEM and explains the steps that
are necessary in order to implement the Local Discontinuous Galerkin solver using the
LocalDGPass class.

4.1 Advection-Diffusion Equation

The example problem is a scalar advection-diffusion equation on Q = [0,1]3

Ou+V-(au) —eAu=0 nQxT
=gp ondQxT (4.1)
u(0,-) =ug in Q x {0},
where u belongs to a function space V and a := (0.8,0.6,0)!. An exact solution is
specified by

2

u(z,t) = Zexp(—etw2|ci|) (H?Zléz- COS(C;-?T(CE]' —a;t)) + é; sin(;-71'(:6]' —ajt))), (4.2)
=1
where
¢l =(2,1,1.3) ¢ :=(0.7,0.5,0.1) (4.3)
¢t :=1(0.8,0.4,-0.4)" ¢ :=1(0.2,0.1,0.2)
¢l :=1(0.6,1.2,0.1)! & :=(0.9,0.3,-0.3).

Therefore the initial and boundary data functions are defined by
u(x,0) = up(z) ulpa(z,t) = gp(z,t). (4.6)

Note that the problem is also implemented for two dimensions by projecting everything
onto the first two coordinates. The discretization of the problem is done as described in
[8, Chapter 4].

43

4 An LDG solver for Advection-Diffusion Equations

The LDG Ansatz uses auxiliary functions ug, us € V and u; € V3

Uy = u

up = —veVug (47)
ug = =V - (aug + Veuy) '
O = Us.

Now ug and u; can be projected onto the Discontinuous Galerkin function spaces V}, :=
{o1,.. . pn} resp. [Vi]? = {¢1,... 1,3} with discrete domain in space. The equations in
(4.7) can then be rewritten as a variational formulation

[= [Veuvv- [Eugpn e (48)
T T~~~ AT~
f1(uo) f1(uo)
/ Ugp = / (auo + \/Eul) Vi — / (auo + \/Eul) p-n Yo eV, (4.9)
T T N~———— 0T ~—~—m—
fa(uo,u1) fa(uo,u1)

for every grid cell T. To complete the discretization in the space domain, the numerical
fluxes between the cell interfaces must be defined to approximate f; and fo defined in
(4.8) and (4.9). In this example we choose

Funtuo) ={ VAR 098 (4.10)
Fatoo) = { SRV =

where

{u} = %(u(ﬂﬁ) +u(z7)) and w(a,ug) = { aug(z™) ifa-n<0

aup(xz™) ifa-n>0 (4.12)

define the mean value function and the upwind function over the cell interfaces. Now an
operator L : Vj, — V), can be defined as a concatenation L := Il o Ly o L of the two
operators

L1 :Vh — Vh X V/f (u()) —> (uo,ul) (4 13)

Lo :Vh X V]{3 — Vh X Vf? X Vh (uo,ul) — (’LL(),’LLl,’LLQ) .
and the projection operator II that projects to the last component. The concatenation
Il o Ly o Ly can later be implemented by the Dune: :Pass class. This allows to shorten
the problem formulation to

dyu + L[u] = 0. (4.14)

44

4 An LDG solver for Advection-Diffusion Equations

This ODE in the time domain can be solved with standard ODE solvers requiring eval-
uations of the discrete operator L in each time step. The so-called “methods of lines” is
further examined in [8, Chapter 4.3].

4.2 Implementation overview

The source code of the implementation described in this section is located in the directory
dune-femhowto/tutorial/localdg. It consists of 6 source files:

e dgtest.cc is the source file for the main program and is explained in the next
section. It utilizes the dune/fem-howto/baseevolution.hh header file for EOC
handling and time loop routines which was described in the chapter on the finite
volume transport example. (Ch. 2)

e problem.hh contains the class U0 which defines the exact solution u (4.2), the
boundary data function gp and the initial data function ug both defined in (4.6).
Those functions can be accessed through the methods

void evaluate (const DomainType & arg, RangeType& res) const

for u resp. gp, and

void evaluate (const DomainType & arg, double t, RangeType& res) const

for ug. The class U0 is derived from the virtual interface class ProblemInterface
allowing definition of different problems the user can select at runtime by specifying
a parameter on the command line or in a parameter file.

e models.hh contains the class AdvectionDiffusionModel implementing the model
data given in equation (4.7) and the class UpwindFlux which is just a helper class
for the upwind flux given in (4.12).

e discretemodels.hh contains two classes AdvDiffDModell and AdvDiffDModel2
that describe the two passes of the LDG implementation, i.e. the terms and fluxes
given by (4.8-4.11). For further details on these classes see section 4.5.

e advectdiff.hh provides the LDG Operator DGAdvectionDiffusionOperator con-
structed out of the models given in discretemodels.hh. For further details, refer
to section 4.5.

45

— e
= O © 0N oUW N

P S S e S o
S © ;oA W N

182
183
184
185
186
187
188
189

191
192
193
194
195

4 An LDG solver for Advection-Diffusion Equations

4.3 Main Loop

The main loop can be found in the file dgtest.cc (9). It uses the evolve function
of the source file baseevolution.hh. This function provides an interface for a generic
evolution scheme with routines for EOC data computation and data visualization. For
details on this function refer to chapter ref TODO.

In order to customize the evolve function for our Local Discontinuous Galerkin problem,
we only need to declare a Stepper class that we give to the evolve function as a template
parameter. An explanation of the most important lines in the definition of this class
follows in section 10.

Listing 9 (../../tutorial /localdg/dgtest.cc)

// include host specific macros set by configure script
#include <config.h>

// include std libs
#include <iostream>
#include <string>

// Dune includes

#include <dune/fem/misc/l2error .hh>

#include <dune/fem/operator/projection/l2projection.hh>
#include <dune/fem/gridpart/common/gridpart .hh>
#include <dune/fem/solver/odesolver .hh>

// include local header files
#include <dune/fem-howto/baseevolution.hh>
#include "models.hh"

// approxzimation order
const int order = POLORDER;
const int rkSteps = POLORDER + 1;

int main(int argc, char #** argv, char ** envp) {
typedef Dune::GridSelector :: GridType GridType;

/% Initialize MPI (always do this even if you are not using MPI) x/
Dune ::MPIManager :: initialize (argc, argv);

try {

// #xx Initialization
Dune::Parameter ::append (argc,argv) ;
if (argc == 2) {

Dune::Parameter ::append (argv [1]);
}

else

46

196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

4 An LDG solver for Advection-Diffusion Equations

{
Dune::Parameter ::append ("parameter ") ;

}

// ProblemType is a Dune:: Function that evaluates to u_0 and also has a
// method that gives you the exact solution.

typedef Dune::U0< GridType > ProblemType;

ProblemType problem;

// Note to me: problem description is for FemEOC
Dune::GridPtr <GridType> gridptr = initialize< GridType >(std::string("Local_ DGy
scheme") +
problem.description ());
// get grid reference
GridType & grid = *gridptr;

/o ko s sk sk sk ok sk sk sk sk sk ok ok sk sk sk sk sk ok ok sk ok sk sk ok Kk sk ok sk ok ok ok ok sk ok Kk ok ok ok
* FOC Loop *
st ok s sk ok sk ok ok ok ok sk sk ok ok sk ok sk sk ok kK sk ok sk sk ok Kk sk ok sk sk ok sk ok ok ok ok ok /
Stepper <GridType, ProblemType :: BaseType> stepper (grid, problem);

compute (stepper) ;
Dune::Parameter ::write ("parameter .log");

}
catch (Dune::Exception &e) {
std::cerr << e << std::endl;
return 1;
} catch (...) {
std::cerr << "Genericgexception!" << std::emndl;
return 2;

}

return 0;

}

Note that the entire main function is embedded into a try block such that exceptions can
be caught in lines 221-227. This is recommended in order to get useful error messages
in case something goes wrong the runtime.

In lines 191-198 the singleton Dune: : Parameter is initialized for later use. It manages all
parameters the user can set after the compilation of the program either via the command
line or a parameter file. The default name for the parameter file is “parameter” (as
defined in line 197) and can also be changed through the command line.

Among other parameters the user needs to specify the name of a DGF file from the
function initialize in line 206 which constructs a GridPtr. This function is also
included from the header file base.hh. After we get the grid, we can define the Stepper

47

4 An LDG solver for Advection-Diffusion Equations

in line 214 and pass it to the evolve function in line 216 which computes the entire
evolution scheme with additional EOC handling.

4.4 Stepper control class

The Stepper needs to provide four methods space, initialize, step and finalize
The first one simply returns a reference of the discrete function space which needs
to be defined in the Stepper class, because the more important methods initialize
and step need to be aware of the discrete solution. They are called inside the evolve
function at the beginning of the evolution scheme respectively at each time step.

Listing 10 (Stepper class from ../../tutorial /localdg/dgtest.cc)

22 template <class GridImp, class InitialDataType >
23 struct StepperTraits {
24 // type of Grid
25 typedef GridImp GridType;
26
27 // Choose a suitable GridView
28 typedef Dune::DGAdaptiveLeafGridPart < GridType >
GridPartType;
29
30 // An analytical wversion of our model
31 typedef AdvectionDiffusionModel < GridPartType, InitialDataType > ModelType ;
32
33 // The fluz for the discretization of advection terms
34 typedef UpwindFlux< ModelType > FluxType;
35
36 // The DG Operator (using 2 Passes)
37 typedef Dune::DGAdvectionDiffusionOperator< ModelType, UpwindFlux,
38 order > DgType;
39
40 // The discrete function for the unknown solution is defined in the DgOperator

41 typedef typename DgType :: DestinationType
DiscreteFunctionType;

42 // ... as well as the Space type

43 typedef typename DgType :: SpaceType
DiscreteSpaceType;

44
45 // The ODE Solvers

46 typedef DuneODE :: OdeSolverInterface< DiscreteFunctionType >
OdeSolverInterfaceType;

47 typedef DuneODE :: ImplicitOdeSolver < DiscreteFunctionType >
ImplicitOdeSolverType;

48 typedef DuneODE :: ExplicitOdeSolver < DiscreteFunctionType >

ExplicitOdeSolverType;
49
50 // type of restriction/prolongation projection for adaptive simulations

48

};

typedef

4 An LDG solver for Advection-Diffusion Equations

Dune

RestrictProlongDefault < DiscreteFunctionType >
RestrictionProlongationType;

template <class GridImp,

struct Stepper

{

J// my traits

class

class InitialDataType >

public AlgorithmBase < StepperTraits< GridImp, InitialDataType > >

typedef StepperTraits< GridImp, InitialDataType > Traits ;

// my base

class

typedef AlgorithmBase < Traits > BaseType;

// type of Grid
typedef typename Traits

GridType GridType;

// Choose a suitable GridView
typedef typename Traits

GridPartType GridPartType;

// An analytical wversion of our model
typedef typename Traits

ModelType ModelType ;

// The fluxz for the discretization of advection terms
typedef typename Traits

FluxType FluxType;

// The DG Operator (using 2 Passes)
typedef typename Traits

DgType DgType;

// The discrete function for the unknown solution is defined in the DgOperator
typedef typename Traits

/o

typedef typename Traits

// The ODE Solvers

typedef
typedef
typedef

typedef

typename
typename
typename

typename

using BaseType

DiscreteFunctionType DiscreteFunctionType;

as well as the Space type

DiscreteSpaceType DiscreteSpaceType;
Traits OdeSolverInterfaceType OdeSolverInterfaceType;
Traits ImplicitOdeSolverType ImplicitOdeSolverType;
Traits ExplicitOdeSolverType ExplicitOdeSolverType;
BaseType :: TimeProviderType TimeProviderType;
grid_;

Stepper (GridType& grid,
BaseType (grid),
problem_ (problem),
model_(problem_),
convectionFlux_(model_),

dgOperator_ (grid_,

const InitialDataType& problem)

convectionFlux_),

eocId_(Dune::FemEoc::addEntry (std::string("$L"2$-error"))),
odeSolver_ (0)

“m

49

103
104
105
106
107

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154
155

4 An LDG solver for Advection-Diffusion Equations

“Stepper ()

{

}

delete odeSolver_;
odeSolver_ = 0;

// before first step, do data initialization

void initializeStep(TimeProviderType& tp,

{

}

// choice of explicit or implicit ode solver
static const std::string odeSolver []
= { "explicit", "implicit" };
int odeSolve = Dune::Parameter ::getEnum("femhowto.odesolver",

// create implicit or explicit ode solver

DiscreteFunctionType& u)

odeSolver,

if (odeSolve == 0)

odeSolver_ = new ExplicitOdeSolverType (dgOperator_, tp, rkSteps);
else

odeSolver_ = new ImplicitOdeSolverType (dgOperator_, tp, rkSteps);

assert (odeSolver_);

Dune::Fem::L2Projection< InitialDataType , DiscreteFunctionType
12pro (problem_, u);

> 12pro;

// odeSolver_.—>initialize applies the DG Operator once to get an initial

// estimate on the time step. This does not change the initial
odeSolver_->initialize (u);

// solve ODE for one time step
void step(TimeProviderType& tp, DiscreteFunctionType& u)

{

}

assert (odeSolver_);
odeSolver_->solve (u);

// after last step, do EOC calculation
void finalizeStep(TimeProviderType& tp, DiscreteFunctionType& u)

{

Dune::L2Error <DiscreteFunctionType > L2err;

// Compute L2 error of discretized solution
Dune::FieldVector <double ,ModelType ::dimRange> error;

error = L2err.norm(problem_, u, tp.time());

// ... and print the statistics out to the eocOutputPath file
Dune: :FemEoc::setErrors (eocId_,error.two_norm());

// delete ode solver

delete odeSolver_;
odeSolver_ = 0;

20

data u.

0

)

4 An LDG solver for Advection-Diffusion Equations

At the time step 0 the discrete function U needs to get initialised with data from the
initial data function ug. This is done in lines 127-128 by a projection of the analytical
function ug onto the discrete function space with help of the utility class L2Projection.
Furthermore, in lines 120 and 122 two ODE solver are defined, an implicit and an explicit
Runge-Kutta solver, between which the user can switch at runtime. The arguments for
the constructor of the solver include

e the Dune: :Operator dg which is the discrete implementation of operator L in
equation (4.14),

e the time provider tp that manages the current time and time step length that is
to be used for the next computation of the ODE solver and

e the order of the Runge-Kutta solver rkSteps.

Each time the ODE solver calls one of its methods initialize or solve (see lines 132,
139), the operator dg is evaluated and afterwards the solver asks the operator for a new
time step estimate by calling the operator’s method timeStepEstimate which returns
an estimate for the next time step length. The estimate must be chosen such that
the operator is stable under the forward Euler integration. The ODE solver afterwards
weights the estimate with a factor which is specific to the chosen ODE integration
method. In addition, the user has the possibility to multiply a factor to the time step
estimate via the fem.timeprovider.factor parameter. For details on the time step
length estimation refer to the TimeProvider section in the DUNE-FEM documentation.

The method finalize gets called at the end of the evolution scheme and can be used
for formating output and computation of EOC data. In this example the DUNE-FEM
class FemTimer is used for this purpose.

The next section is supposed to shed light on the construction of the discrete space
operator dg, the main object of the Local DG solver.

4.5 Setting up an LDGPass

In order to set up the operator L as it is defined in (4.13) the DUNE-FEM Pass concept
is used.

The passes L1 and Lo are implemented as LocalDGPass instances. Each LocalDGPass
solves an equation of the form

v+div(f(z,u)) + A(z,u)Vu = S(x,u) in Q. (4.15)

51

270
271
272
273
274
275

277
278
279
280
281
282

284
285
286
287
288

290
291
292
293

4 An LDG solver for Advection-Diffusion Equations

with the argument w and the computed solution v. Both required passes (see (4.7))
are in this form. In the weak formulation of equation (4.15) we identify methods that a
model needs to provide to a LocalDGPass instance. These are analyticalFlux, source,
numericalFlux and boundaryFlux shown in equation refeq:fourmethods.

analyticalFlux
_ Pl
/USD:—/ <f(x’u)+A(x’u)[u]'n)90+/f(xau)‘vSD‘F/(S—A(x,u)v'u)gp_
T or T -
numericalFlux source
boundaryFlux

(4.16)
The header file advectdiff.hh (see listing 12) defines the two models that implement
these four methods Each of these methods describe the discrete version of its corre-
sponding term in the variational formulation (4.16). For the second pass, for example,
in equation (4.9) the analyticalFlux method represents fo(ug,u1), whereas in equation
(4.11) numericalFlux and boundaryFlux represent fy,(ug, u1). numericalFlux imple-
ments the flux on interfaces between inner cells and the boundaryFlux on the boundary
domain. The second pass has no source term, which is why the source needs not to be
implemented. The following listing 11 shows the actual implementation of the second
pass, with some explanations on the code given in the next paragraph.

Listing 11 (AdvDiffDModel2 in ../../tutorial/localdg/discretemodels.hh)

// Discrete Model for Pass2
template <class Model, class NumFlux, int polOrd, int passUId, int passGradId>
class AdvDiffDModel2
public DGDiscreteModelDefaultWithInsideOutside
<AdvDiffTraits2 <Model, NumFlux, polOrd, passUId, passGradId >,
passUId , passGradId>

typedef DGDiscreteModelDefaultWithInsideOutside
< AdvDiffTraits2 < Model, NumFlux, polOrd, passUId, passGradId >,

passUId, passGradId > BaseType ;
using BaseType :: numericalFlux;
using BaseType :: boundaryFlux;

// These type definitions allow a convenient access to arguments of pass.
#if DUNE_VERSION_NEWER_REV (DUNE_COMMON ,2,1,0)

integral_constant <int ,passUId > uVar;
integral_constant <int ,passGradId> sigmaVar;
#else
Int2Type <passUId> uVar;
Int2Type<passGradId> sigmaVar;
#endif
public:

typedef AdvDiffTraits2< Model, NumFlux, polOrd, passUId,

52

294

313
314
315
316
317
318
319
320
321
322

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

4 An LDG solver for Advection-Diffusion Equations

passGradId > Traits;

AdvDiffDModel2(const Model& mod,const NumFlux& numf)
model_ (mod),
numflux_ (numf) ,
penalty_ (Parameter ::getValue<double >("femhowto .penalty")),
// Set CFL number for penalty term (compare diffusion in first pass)
cflDiffinv_ (2.*%(polOrd+1.))
{}

bool hasSource () const { return false; 1}
bool hasFlux () const { return true; 7}

template <class ArgumentTuple >
double numericalFlux(const Intersection& it,
double time, const FacelLocalCoordinate& x,
const ArgumentTuple& ulLeft,
const ArgumentTuple& uRight,
RangeType& gLeft,
RangeType& gRight)

const DomainType normal = it.integrationOuterNormal (x);

/o sk o ok KK Kk oK R o KK KoK oK K o KK ok
* Advection *
s s o KKK R R S KK KK SR R KK KRR Rk %/

// delegated to numfluz_

double wave = numflux_.

numericalFlux(it, time, x, ulLeft[uVar], uRight[uVar], gLeft, gRight);

/% kR kR KRR KRR KRR KRR KKK KR KKK KK K
* Diffusion *
Sk sk SRR R KRR KRR KRR KRR KRR K KKk ok k[
JacobianRangeType diffmatrix;
RangeType diffflux (0.);
/+ Central differences */
model_.
diffusion2 (this->inside (), time, it.geometryInInside().global(x),
uleft [uVar], uleft[sigmaVar], diffmatrix);
diffmatrix .umv (normal, diffflux);
model_.
diffusion2 (this->outside (), time, it.geometryInOutside().global (x),
uRight [uVar], uRight [sigmaVar], diffmatrix);
diffmatrix .umv (normal, diffflux);
diffflux*=0.5;

// add penalty term (enVolume() is available since we derive from
// DGDiscreteModelDefault WithInside Outside)
double factor = penalty_ * model_.diffusionCoefficient () *

normal .two_norm2 () /

(0.5 * (this->enVolume ()+this->nbVolume ()));

o3

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

4 An LDG solver for Advection-Diffusion Equations

RangeType jump(uleft[uVar]);
jump -= uRight [uVar];
diffflux.axpy(factor, jump);

gleft += diffflux;
gRight += diffflux;
return std::max(wave, factor*cflDiffinv_);

}
VAT

* @brief same as numericalFluz() but for fluzes over boundary interfaces
*/
template <class ArgumentTuple >
double boundaryFlux(const Intersection& it,
const double time,
const FacelLocalCoordinate& x,
const ArgumentTuple& ulLeft,
RangeType& gLeft)

Vix:
* @brief analytical fluz function $f_-2(u-0,u-1)$
*/
template <class ArgumentTuple >
void analyticalFlux(const EntityType& en,
const double time,
const LocalCoordinate& x,
const ArgumentTuple& u, JacobianRangeType& f)

/% sk sk sk s sk sk ok sk sk sk sk sk ok ok sk ok sk sk sk ok ok sk ok sk sk ok ok ok
* Advection *
stk ok sk ok sk ok ok ok sk ok sk ok Kk ok ok sk ok kR ok ok %/
model_.advection(en,time, x, uluVar],f);
/% sk sk ok sk ok ok sk sk sk sk sk ok ok sk sk sk sk ok ok Kk sk ok ok ok ok ok
* Diffusion *
stk ok sk ok sk ok ok ok sk ok sk ok Kk ok ok sk ok ok sk ok ok ok /
JacobianRangeType diffmatrix;
model_.diffusion2 (en, time, x, uluVar], ulsigmaVar], diffmatrix);
f += diffmatrix;
}
private:
const Model &model_;
const NumFlux &numflux_;
const double penalty_;
const double cflDiffinv_;
};

Note that in line 321 the model notifies the LocalDGPass that there is no source term, and
therefore the source method is never called and does not need to be implemented. All
the implemented fluxes have a parameter of type ArgumentTuple. This is the argument
type for the passes’ flux functions. In the case of the second pass Lo this type refers to

54

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50

51
52
53
54
55
56
57
58

59
60
61
62

4 An LDG solver for Advection-Diffusion Equations

the product function space V, x V2 (see (4.13)). In order to access the correct component
of the argument, one can use the Int2Type helper class: Every Pass get a unique id after
it is defined (see line 37) and the Int2Type class can convert this unique id to a unique
type as done in lines 289 and 290. These types then allow ArgumentTuples to be used
like arrays, as in line 361 e.g., where uLeft [uOVar] returns ug(z~) and uLeft [ulVar]
returns uy(x).

With models defined for both passes the implementation of the LDG operator becomes
quite simple. The implementation of the operator can be found in the file advectdiff .hh
and excerpts of this file are shown in listing 12.

Listing 12 (../../tutorial/localdg/advectdiff.hh)

template <class Model,template<class M> class NumFlux ,int polOrd >
class DGAdvectionDiffusionOperator
public SpaceOperatorInterface <
typename PassTraits<Model, Model::Traits::dimRange, polOrd>::DestinationType >
{
public:
// Id’s for the three Passes (including StartPass)
enum PassIdType { u, gradPass, advectPass 1};

static const int dimRange = Model::dimRange;
static const int dimDomain Model::Traits::dimDomain;

typedef NumFlux< Model > NumFluxType ;

/o ko sk sk sk sk ok sk sk sk sk sk ok ok sk ok sk sk sk ok Kk sk ok sk sk ok kK sk ok koK ok kK ok
x Declare Models for Passes 162 *
st ok sk sk sk sk ok ok ok ok ok sk ok ok sk ok ok sk ok kK sk ok sk sk ok ok kR sk ok ok ok ok /
// Pass 1 Model (gradient)
typedef AdvDiffDModell < Model, NumFluxType, polOrd, u >
DiscreteModellType;
// Pass 2 Model (advection)
typedef AdvDiffDModel2 < Model, NumFluxType, polOrd, u, gradPass >

DiscreteModel2Type;
typedef typename DiscreteModellType :: Traits Traitsl;
typedef typename DiscreteModel2Type :: Traits Traits2;
typedef typename Model :: Traits :: GridType GridType;
typedef typename Traits2 :: DomainType DomainType ;
typedef typename Traits2 :: DiscreteFunctionType

DiscreteFunction2Type;

typedef typename Traitsl :: DiscreteFunctionSpaceType SpacelType ;
typedef typename Traits2 :: DiscreteFunctionSpaceType Space2Type ;
typedef typename Traitsl :: DestinationType

DestinationiType;

95

63

64

65
66
67
68
69
70
71
72
73
74

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110

4 An LDG solver for Advection-Diffusion Equations

typedef typename Traits2 :: DestinationType
Destination2Type;
typedef Destination2Type
DestinationType;
typedef Space2Type SpaceType ;

typedef typename Traitsl :: GridPartType GridPartType;

/**************************************

* Join the Passes 0—2 *

stk s ok s sk sk ok ok s ok sk sk sk ok ok sk ok sk sk sk ok ok s ok sk sk sk ok ok ok sk sk ok ok sk /
typedef StartPass< DiscreteFunction2Type, u > PassOType ;
typedef LocalDGPass< DiscreteModellType , PassOType, gradPass > Pass1Type;

typedef LocalDGPass< DiscreteModel2Type , Passl1Type, advectPass > Pass2Type ;

DGAdvectionDiffusionOperator (GridType& grid,
const NumFluxType& numf)
grid_(grid),
verbose_ (Parameter :: getValue<int>("femhowto.verbose")),
model_ (numf.model ()),
numflux_ (numf) ,
gridPart_(grid_),
spacel_(gridPart_),
space2_(gridPart_),
probleml_ (model_ ,numflux_),
problem2_ (model_ ,numflux_),
passl_(probleml_, passO_, spacel_),
pass2_(problem2_, passl_, space2_)

{
}
Vexs
* @brief evaluates the operator (pass)
*
* @param arg the operator argument
* @param dest the result of the operator evaluationt
*/

void operator () (const DestinationType& arg, DestinationType& dest) const
{

pass2_(arg,dest);
}

Lines 73 and 74 contain the typedefs for both passes specifying the underlying model
and the pass id of the LocalDG pass. Note that we need to define a StartPass in order
to define the first pass because every regular pass needs a predecessor to be specified.
The StartPass is just a dummy class that does nothing.

The initialisation of the passes in lines 96 and 97 then is straightforward. Line 109 shows
how a pass can be evaluated like an Operator calling all previous passes and projecting
on the last parameter afterwards.

o6

4 An LDG solver for Advection-Diffusion Equations

4.6 Implementing your own Pass Operator

If you want to implement your own Pass operator, you need to derive it either from
the LocalPass or from the more general Pass class. The LocalDGPass class, e.g., is
a specialisation of the LocalPass class which in turn is a Pass. Figure 4.1 shows a
schema of a general pass IIg 0 L;0---0 Ly 0 L1 with all public type names. If you want
to implement your own pass, you need to know, that each instance of a Pass needs to
specify typedefs for DestinationType and GlobalArgumentType and needs to override
the virtual methods compute and allocateLocalMemory if a class instance needs to
allocate memory. For further details on the pass concept and the LocalPass class, see
the DUNE-FEM documentation.

PreviousPassType: StartPass

TotalArgumentType
Ly:Vp, = Up — W1
— e
LocalArgumentType(=Nil) NextArgumentType

Colored Types: GlobalArgumentType, DestinationType

—

PreviousPassType: £

TotalArgumentType

Lo:Vyo =Wy 1x

LocalArgumentType

h2 X W

NextArgumentType
Colored Types: GlobalArgumentType, DestinationType

|

PreviousPassType: L1
TotalArgumentType

l:s : QIh,s = “&Ih,s——l X ... X %N]h71>< U, — h,s X ... X %&Ih,l

LocalArgumentType NextArgumentType

Colored Types: GlobalArgumentType, DestinationType

Figure 4.1: Schema of a pass Il 0 L5 0---0 L9 0 L1 with highlighted type names.

4.7 Visualisation and EOC Output

The program writes data snapshots into the directory given by fem.prefix. These
snapshots can be visualized with GraPE or Paraview.

o7

4 An LDG solver for Advection-Diffusion Equations

Furthermore, dgtest produces on every run, a TEXfile called eoc.tex, which comprises
statistics about the numerical convergence of the implemented LDG scheme. The com-
putation of the EOC and the formatted output to the TgXfile is done in the DUNE-FEM
utility class FemEoc. For further information on the usage of this class, see the source
code files in the . ./tutorial/localdg directory or browse the documentation websites.

o8

5 Solving the Stokes problem

In this chapter we want to show how to use DUNE-FEM for solving the Stokes problem
with the Finite Element method. The Stokes problem reads:

“Au+Vp=f inQ (5.1)
divu=0 inQ .
u=g on J. (5.3)

The source code of the implementation described in this chapter is located in the di-
rectory dune-femhowto/tutorial/stokes. In this example, we choose the following
problem data (with n = dimworld):

Q:=]-1,1[%, x = (x1,22) (5.4)
f(z) =0 Vo e Q (5.5)
u(e) = (TG e (5.6)
p(z) := 2exp™ sin(zs) Vo e Q (5.7)
g(z) :=u(x) Vo € 00 (5.8)

where u is the exact solution for the velocity field and p the exact solution for the
pressure. The boundary values are just the values of the exact solution on the boundary
points. The boundary values for the pressure will be achieved by assuming that

APZO- (5.9)

In the current implementation we also implemented alternative boundary functions and
right hand side functions f to simulate the driven cavity problem and the carman vortex
street problem. Only for the data described above is equipped with an exact solu-
tion u. You can switch between them by changing the runtime parameter femhowto.
stokesproblem in the parameter file parameter. For the carman vortex street simula-
tion the macro grid file has to be adapted. In the folder dune-femhowto/tutorial/stokes

29

5 Solving the Stokes problem

is an adapted macro grid file for this type of problem, called
dune-femhowto/tutorial/stokes/carman.dgf.

In fact the actual problem interface does not support additional pressure functions. So
pressure is not exported or treated in the error calculation process.

The numerical treatment of problem (5.1) will be described in the following. In order
to solve the problem with the finite element method a weak formulation of the Stokes
problem is needed. A weak formulation of the Stokes problem is given as

a(u,v) = bl (v,p) = F(v) ¥YwveV (5.10)
b(u,q) =0 Vge P (5.11)
with the linear forms
a(u,v) := / Vu:Vv foruveV (5.12)
Q
b(v,p) := / Vv-p for ve Vand p € P. (5.13)
Q

The space V, P are usualy chosen as
V= HY(Q)?
and

P 13(@) = (pe 1@ | [p=0}.

As we are interested in the numerics for the Stokes problem, we need discrete dimensional
subspaces V;, and P, of V and P. These two subspaces V}, and P, have to fullfill the
condition

b
sup 209 5 g (5.14)
a€P\0 vev;\o lIvllllal

It is needed to guarantee solutions for the weak formulation of the Stokes problem and
also for the discrete formulation based on the weak one. Hence the spaces V}, and Py
have to be chosen conforming this condition. As stated in the literature (e.g. Breass)
the Taylor-Hood- elements fullfill this condition. A Taylor-Hood-element is given as the
space

Vi, x Py, = {U S CO(Q) : U‘T €]P’k(T) VT € Gh}
x {v e C%Q):v|p e PFYT) VT € G} (5.15)

60

5 Solving the Stokes problem

with polynomial order k£ and a grid Gj. This choice of the subspaces V}, and Py leads
to a system of equations. Similar to the Poisson problem we get

Au—BTp=F (5.16)
Bu=0 (5.17)

where A, B are given as matrices of the form
Ai,j = / V‘Pi : VL,O]‘ (5.18)
Q
Bz’,j = / div SDH/)]' . (519)
Q

The functions ¢; and 1; are the base functions of the spaces V}, and F},. By solving the
linear system 5.16 an approximating solution to the stokes problem in Vj x P, can be
found.

5.1 Implementation

We first describe the basic implementation of the algorithm. The basic implementation
consists of the following source files:

e main.hh: Contains the main function. The algorithm first initializes the problem
data (implemented in the file problemdata.hh) and then calls the main algorithm
(implemented in the file algorithm.hh). We utilize here the function compute from
the header file dune/fem-howto/base.hh, which is an abstract implementation of
a numerical scheme for stationary problems.

e problemdata.hh: Contains several classes which implement several boundary data
functions g and right hand side functions f for the problem 5.1. The actual problem
class is choosen at runtime, see the parameter file parameter. We use the value
of the exact solution as Dirichlet boundary data (see class Algorithm in the file
algorithm.hh), so there is no need to explicitly implement the boundary data g.

e algorithm.hh: Contains a class Algorithm which provides the main algorithm.
This algorithm is described in section 5.1.1 in detail.

61

5 Solving the Stokes problem

e laplaceoperator.hh: Contains the classes LaplaceFEOp and
RightHandSideAssembler which implements the discrete stiffness matrix A with
entries for DOFs on the region’s boundary and the discrete right hand side b as
described in section for the Laplace problem 3.1. How this is implemented is the
topic of section 3.1.2.

e stokesoperator.hh: Contains the classes DivergenceFEOp which models the dis-
crete divergnece matrix B with boundary treatment. How this discrete divergence
matrix is implemented is topic of section 5.1.3.

5.1.1 Algorithm

We begin with the main function in the file main.hh, see Listing 13. We delegated the ba-
sic numerical scheme to the compute function in the file dune/fem-howto/base.hh, the
problem specific code parts are implemented in the class Algorithm (described below),
so the main function is rather short.

Listing 13 (Excerpt of dune-fem-howto/tutorial /stokes/main.cc)

66 int main(int argc, char x**argv)

67 {

68 typedef GridSelector::GridType GridType;

69

70 typedef ProblemInterface <FunctionSpace < double, double, GridType::dimension,
GridType ::dimension > > ProblemType;

71

72 // initialize MPI

73 MPIManager :: initialize (argc, argv);

74 const int rank = MPIManager :: rank ();

75

76 try

77 {

78 // append parameters from the comand line

79 Parameter ::append (argc, argv);

80

81 // append parameters from the parameter file

82 Parameter ::append ((argc < 2) 7?7 "parameter" : argv[1 1);

83

84 // generate GridPointer holding grid instance

85 GridPtr < GridType > gridptr = initialize< GridType >(std::string("Stokesy
problem"));

86

87 // get grid reference

88 GridType& grid = *xgridptr ;

89

90 // create problem

91 ProblemType * problem = createProblem<GridType> ();

62

92
93
94
95

96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113

117
118
119

263
264
265
266
267
268
269

5 Solving the Stokes problem

assert (problem);

// create stepper class

Algorithm<GridType, velocityPolynomialOrder , preasurePolynomialOrder >
algorithm (grid, *problem) ;

// compute solution

compute (algorithm) ;

// write parameter logfile
Parameter :: write("parameter.log");

// remove problem
delete problem;

return O;
}
catch(Exception &exception)
{
if (rank == 0)
std :: cerr << exception << std :: endl;
return 1;
}
}

After initializing the grid in line 85, we get an instance of a class containing the problem
data (line 91) and an instance of the class Algorithm, containing the algorithm. After
that, the function compute is executed in line 97. The function compute, defined in the
file dune/fem-howto/base.hh, calls the operator() routine from the class Algorithm
several times at different grid sizes and the experimental order of convergence is com-
puted.

Now, we are going to explain the problem specific algorithm in the class Algorithm, see
Listing 14. An explanation of the most important lines in the class definition follows
after the listing.

Listing 14 (Excerpt of dune-fem-howto/tutorial/stokes/algorithm.hh)

class Algorithm
{
public:

//! constructor
Algorithm (GridType & grid, const ProblemType& problem)
: grid_(grid),

gridPart_(grid_),

velocitySpace_(gridPart_),

pressureSpace_(gridPart_),

problem_ (problem)

63

5 Solving the Stokes problem

270 {

271 // add entries to eoc calculation

272 std::vector<std::string> femEocHeaders;

273 // we want to calculate L2 and HI error (and EOC)

274 femEocHeaders.push_back ("$L"2$-error");

275 femEocHeaders.push_back ("$H 1$-error");

282 }

283

284 //! setup and solve the linear system

285 void operator () (DiscreteVelocityFunctionType & solution)

286 {

308 // initialize solution with zero

309 solution.clear ();

310

311 // create laplace assembler (is assembled on call of systemMatriz by solver)

312 LaplaceOperatorType laplace(velocitySpace_ , problem_);

313

314 // create divergence assambler

315 DivergenceOperatorType div(velocitySpace_ , pressureSpace_);

316

317 // create right hand side

318 DiscreteVelocityFunctionType rhs("rhs", velocitySpace_);

319

320 // create pressure right hand side

321 DiscretePressureFunctionType g("rhsyfor pressure", pressureSpace_);

322

323 // initialize as zero

324 g.clear () ;

325

326 // setup right hand side

327 const int quadratureOrder = 2 x velocitySpace_.order () + 1;

328 RightHandSideAssembler < DiscreteVelocityFunctionType >

329 ::assemble (problem_ , rhs , quadratureOrder);

330

331 // set Dirichlet Boundary to ezact solution

332 const IteratorType endit = velocitySpace_.end();

333 for(IteratorType it = velocitySpace_.begin(); it != endit; ++it)

334 {

335 const EntityType &entity = *it;

336 // in entity has intersections with the boundary adjust dirichlet nodes

337 if (entity.hasBoundaryIntersections ())

338 boundaryTreatment (entity, problem_, rhs, solution);

339 }

340

341 // adjust discrete pressure right hand side to fix the divergence free
condition on

342 // boundary, first apply divergence to bnd data in solution

343 div(solution, pressure);

344

345 // apply the changes in the divergence matriz to the right hande side

64

346
347
348
349
350
351
352
353
354
355

356
357
358
359
360
361
362
363
364
365
366

367
368
369
370
371

386

394
395
396
397
398
399
400
401

469
470
471
472
473
474
475
476
477
478

5 Solving the Stokes problem

g -= pressure;
pressure.clear ();

// set correct bnd wvals to divergence operator
div.boundaryTreatment () ;

// solve the linear system
solve (laplace, div, rhs, g, solution, pressure);

}

//! finalize computation by calculating errors and FEOCs
void finalize (DiscreteVelocityFunctionType & solution)
{

// create exact solution

ExactVelocitySolutionType uexact(problem_);

// create grid function adapter
GridExactVelocitySolutionType ugrid("exactyvelocity",

uexact,

gridPart_,

DiscreteVelocitySpaceType
polynomialOrder + 1);

// create L2 — Norm
L2Norm< GridPartType > 1l2norm(gridPart_);
// calculate L2 — Norm

const double 1l2errorVelo = 12norm.distance (ugrid, solution)

private:

//! set the dirichlet points to exact values

template< class EntityType, class DiscreteFunctionType >

void boundaryTreatment (const EntityType &entity,
const ProblemType& problem,
DiscreteFunctionType &rhs,
DiscreteFunctionType &solution)

// evaluate boundary data

typedef typename VelocityFunctionSpaceType :: RangeType

RangeType phi, phiLocal;
problem.g(global, phi);

const double bndValue = phil i];
// adjust right hand side and solution data

rhsLocal [localDof] = bndValue;
solutionLocal[localDof] = bndValue;

65

RangeType ;

483
484
485
486
487

489
490
491
492
493

511
512

513
514
515

523
524
525
526
527
528
529
530
531
532
533

5 Solving the Stokes problem

}

//! solve the resulting linear system

void solve (LaplaceOperatorType &laplace,
DivergenceOperatorType &div,
const DiscreteVelocityFunctionType &rhs,
const DiscretePressureFunctionType &g,
DiscreteVelocityFunctionType &velocity,
DiscretePressureFunctionType &pressure)

// create inverse operator
InverseOperatorType uzawa(inverselaplace, div, dummy, solverEps,
maxIterations , verbose);

// solve the system
uzawa(rhs, g, velocity, pressure);

protected:
GridType& grid_;
GridPartType gridPart_;
DiscreteVelocitySpaceType velocitySpace_;
DiscretePressureSpaceType pressureSpace_;
const ProblemType& problem_;
int eoclId_;

};

The definition of the class Algorithm starts with some typedefs (not printed here) defin-
ing the grid type, the function spaces and discrete functions, the Laplace operator and a
solver for the linear systems. Furthermore, the constructor and the methods operator
(), finalize, and space need to be defined. The methods operator() and finalize
are evaluated by the compute function in this order every time a new numerical solution
needs to be computed. The method operator() should be used for the implementation
of the actual numerical scheme, while the constructor and the method finalize can be
used for post-processing.

In this example, operator() initializes the Laplace operator A and the Divergence
operator in line 312 and 315, the right hand side function b in lines 318, a second right
hand side function ¢ is needed for the boundary treatment and the solving process. It is
intialized and cleared in the line 321. In line 338 we get a boundary function stored in
the solution holding the boundary values. The lines 343 to 351 are explained in section

66

221

5 Solving the Stokes problem

5.1.4. Finally the linear system of equations for the unknown discrete function wu is
solved in line 355. This line executes the private method solve initializing an UZAWA
Solver for the saddlepoint problem 5.16 in line 512 and executing it in line 515.

After the solution step is executed, we compute the L? and the H' error between the
exact and the discrete solution in the finalize method. The method space simply
returns a reference to the instance of a discrete function space.

To change certain runtime parameters the user needs to edit the file parameter in
the directory dune-femhowto/tutorial/stokes/ or the file parameter in the direc-
tory dune-femhowto/tutorial/base/. These parameter are processed by the Dune: :
Parameter singleton which can be accessed anywhere in the program.

The initial grid size can be manipulated by the femhowto.startLevel parameter in-
dicating the number of refinement steps that are executed on the grid before the first
numerical solution gets computed. The parameter femhowto.eocSteps then controls
the number of subsequent EOC computations. The compute function makes use of the
DUNE-FEM utility classes FemEOC and FemTimer which write out nicely formatted output
information on the evolution of the EOC error and the elapsed time of computations to
the files eoc_main.tex and timer.out.

5.1.2 Assembling the Laplace operator

The assembling of the Laplace operator is basicly the same as for the Poisson problem,
see 3.1.2 for further details. The test problems for the Poisson problem are all scalar.
Since we are concering a velocity field the multi dimensional Laplace operator has to be
calculated over all range dimensions. The changes made to the version of the Poisson
problem are detiled in listing 15.

Listing 15 (Excerpt of dune-femhowto/tutorial/stokes/laplaceoperator.hh)

//! assemble local matriz for given entity
template< class EntityType >

void assemblelLocal(const EntityType &entity) const
{

// for all base functions evaluate the gradient
// on quadrature point pt and apply jacobian inverse
baseSet . jacobianAll (quadrature[pt], inv, gradCache_);

// apply diffusion tensor

for(size_t i = 0; i < numBaseFunctions; ++i)

{

67

270
271
272

280

283
284
285
286
287
288

290
291
292
293
294
295

297
298
299
300

18

19
20
21
22
23
24
25

5 Solving the Stokes problem

for (int k=0;k<dimRange ;++k)
K.mv(gradCache_[i 1[k 1, gradDiffusion_[i 1[k 1);

void updatelLocalMatrix (LocalMatrixType &localMatrix) const
{

const size_t rows

localMatrix .rows ();

const size_t columns = localMatrix.columns ();
for(size_t i = 0; i < rows; ++i)
{

for (size_t j = 0; j < columns; ++j)

{

RangeFieldType value =0.;
for (int k=0;k<dimRange ;++k)
value += (gradCache_[i J[k] * gradDiffusion_[j 1[k 1);

value *= weight_;
localMatrix.add(i, j, value);
}
}
¥

In line 77 and 293 we add up the multidimensional entries of the discrete Laplace oper-
ator.

5.1.3 Assembling the discrete divergence operator

This section shows how the discrete divergence operator is assembled. The implementa-
tion for the discrete divergence operator can be found in file
dune-femhowto/tutorial/stokes/stokesoperator.hh. The important parts of the
operator implementation are shown in listing 16.

Listing 16 (Excerpt of dune-fem-howto/tutorial /stokes/stokesoperator.hh)

template< class DiscreteVelocityFunction, class DiscretePressureFunction, class
MatrixTraits >
class DivergenceFEOp
public Operator< typename DiscreteVelocityFunction :: RangeFieldType,
typename DiscretePressureFunction :: RangeFieldType,
DiscreteVelocityFunction,
DiscretePressureFunction >,
public OEMSolver ::PreconditionInterface

{

68

118
119
120
121
122
123
124

131
132
133
134
135
136

163
164
165
166

168
169
170
171
172
173
174
175
176
177

178
179

185

187
188
189

190
191
192
193
194
195
196
197
198

200

5 Solving the Stokes problem

public:
//! apply the operator
virtual void operator () (const DiscreteVelocityFunctionType &u,
DiscretePressureFunctionType &w) const
{
systemMatrix () .apply(u, w);
}

virtual void applyTransposed (const DiscretePressureFunctionType &u,
DiscreteVelocityFunctionType &w) const

{
systemMatrix () .apply_t (u,w);
}
LinearOperatorType &systemMatrix () const
{
// if stored sequence number it mnot equal to the one of the
// dofManager (or space) then the grid has been changed
// and matriz has to be assembled new
if (sequence_ != dofManager_.sequence ())
assemble () ;
return linearOperator_;
}

/% \brief perform a grid walkthrough and assemble the global matriz */

void assemble () <const
{
const DiscreteVelocityFunctionSpaceType &velocitySpace =
discreteFunctionSpace () ;

// reserve memory for matrix
linearOperator_.reserve () ;

// clear matriz
linearOperator_.clear ();

// apply local matriz assembler on each element

typedef typename DiscreteVelocityFunctionSpaceType :: IteratorType
IteratorType;
IteratorType end = velocitySpace.end();
for(IteratorType it = velocitySpace.begin(); it != end; ++it)
{
assembleLocal (*it);
}
// get elapsed time
const double assemblyTime = timer.elapsed ();
// in wverbose mode print times
if (Parameter :: verbose ())
std :: cout << "Timegtoyassemble divymatrix: " << assemblyTime <<

69

ngn

<<

5 Solving the Stokes problem

std :: endl;

201

202 // get grid sequence number from space (for adaptive runs)

203 sequence_ = dofManager_ .sequence ();

204 }

205

206 // make boundry treament

207 void boundaryTreatment () const

208 {

209 typedef typename DiscreteVelocityFunctionSpaceType :: IteratorType
IteratorType;

210 typedef typename IteratorType :: Entity EntityType;

211

212 const DiscreteVelocityFunctionSpaceType &dfSpace = discreteFunctionSpace();

213

214 const IteratorType end = dfSpace.end();

215 for(IteratorType it = dfSpace.begin(); it != end; ++it)

216 {

217 const EntityType &entity = *it;

218 // if entity has boundary intersections

219 if (entity.hasBoundaryIntersections ())

220 boundaryCorrectOnEntity (entity);

221 }

222 ¥

223

224 protected:

225 //! assemble local matriz for given entity

226 template< class EntityType >

227 void assemblelocal(const EntityType &entity) const

228 {

229 typedef typename EntityType :: Geometry GeometryType;

230

231 // assert that matriz is not build on ghost elements

232 assert (entity.partitionType() != GhostEntity);

233

234 // cache geometry of entity

235 const GeometryType geometry = entity.geometry ();

236

237 // get local matriz from matriz object

238 LocalMatrixType localMatrix

239 = linearOperator_.localMatrix (entity, entity);

240

241 // get base function set

242 const VelocityBaseFunctionSetType &velocityBaseSet = localMatrix.
domainBaseFunctionSet () ;

243 const PressureBaseFunctionSetType &pressureBaseSet = localMatrix.
rangeBaseFunctionSet ();

244

245 // create quadrature of appropriate order

246 QuadratureType quadrature (entity, 2 * (velocityPolynomialOrder - 1));

247

248 // loop over all quadrature points

249 const size_t numQuadraturePoints = quadrature .nop();

70

250
251
252
253
254

256
257
258
259
260
261
262
263
264
265
266
267
268

270
271
272
273
274
275

277
278
279
280
281
282

284
285
286
287
288
289

291
292

366

5 Solving the Stokes problem

for(size_t pt = 0; pt < numQuadraturePoints; ++pt)
{

// get local coordinate of quadrature point

const typename QuadratureType :: CoordinateType &x

= quadrature .point(pt);

// get jacobian inverse transposed
const FieldMatrix< double, dimension, dimension > &inv
= geometry.jacobianInverseTransposed(x);

// for all base functions evaluate the gradient
// on quadrature point pt and apply jacobian inverse
velocityBaseSet. jacobianAll (quadrature[pt], inv, gradCache_);

// evaluate each base function
pressureBaseSet.evaluateAll (quadrature[pt], values_);

// evaluate integration weight
weight_ = quadrature .weight(pt) * geometry.integrationElement(x);

// add scalar product of gradients to local matriz
updateLocalMatrix(localMatrix);
}
¥

//! add scalar product of cached gradients to local matriz
void updatelLocalMatrix (LocalMatrixType &localMatrix) const

{
const size_t rows = localMatrix .rows () ;
const size_t columns = localMatrix.columns () ;
for(size_t i = 0; i < rows; ++i)
{
for (size_t j = 0; j < colummns; ++j)
{
RangeFieldType value =0.;
for(size_t k = 0O;k<dimRange ;++k)
value += gradCache_[j I[k 1[k 1;
value *= -1.% weight_ *values_[i 1;
localMatrix.add(i, j, value);
}
}
}

};

The class DivergenceFEQp is derived from the Dune: :Operator class. This is why we
need to override the operator() method. In line 123 this method delegates the work
to the evaluate function of the underlying system matrix. Note that the system matrix
is accessed through a call to the systemMatrix() method. This method first checks in

71

5 Solving the Stokes problem

line 168 whether the grid and therefore the container storing the function’s DOFs were
changed since the last assembling of the system matrix. This is done with help of the inte-
ger variable dofManager_.sequence which gets incremented each time the grid changes
because of an adaptation or global refinement step. In case it does not equal the private
member sequence_, the system matrix is invalid and gets updated by the assemble
method. This method does a grid traversal and calls the method assembleLocal on
each element in line 193. To invert the system of equations 5.16 we also need a method
which applies the transposed matrix to a pressure function. In line 135 the corresponding
function on the system matrix is called. Also the method applyTransposed() delegates
the work to the applyTransposed function of the underlying system matrix.

Local degrees of freedom

We denote by Iy(T) := {i € {1,...,N} | ¢i|lr # 0} the set of all DOF indices for
the velocity space with corresponding basefunctions that have positive support on the
grid entity 7' € T. Analogously, Ip(T) := {z e{l,....N} | ¥ilr # 0} denotes the

indices for the pressure space. Then the DOFs v} := v, (k) are called the local de-

grees of freedom for the velocity space on the grid entity T for k = 1,...,|[Iy(T)],
where pi @ {1,...,|Iy(T)|} — Iy(T) is an enumeration of Iy (7). And the DOFs
plT = UL (k) are called the local degrees of freedom for the pressure space. With this
notation the LocalMatrix that is retrieved in line 238 can now be read as a matrix
LT € REVIDIXIPD] with matrix entries

(L"), . = (A) 7

= L<i<|W(T)| 1<j<|IpT). (5.20)
Note that changes in the local matrix also affect the corresponding entries in the system

matrix B.

In order to assemble this local matrix on every grid entity 7', we need the base functions
corresponding to the local degrees of freedom on the entity. In line 242 and 243 we
retrieve the BaseFunctionSet that consists of all base functions PuT (1) 2 PUT (I (T)))

living on the reference element T for the velocity space and the pressure space

1/1#;(1), e 7¢H£(‘1P(T)|). Together with the reference mapping ®* : 7' — T weAget the
base functions ¢, ;) = @((pH:T/(Z-)) for i = 1,...,|Iy(T)| and Yur iy = @(wﬂg(i)) for
i=1,...,|Ip(T)|. The gradients of the velocity basefunctions and the function values

of the pressure basefunctions are cached in line 77, 266 and written into the local matrix
in line 289.

72

5 Solving the Stokes problem

5.1.4 Boundary treatment

After the assembling of the stiffness matrix A (section 5.1.2), and the divergence matrix
B (section 5.1.3) we have to build a function with exact boundary values. This is done
in the algorithm structure. Tho get the influence of the boundary values to the system
of equations, we apply the divergence matrix to this boundary data 14 line 343. This
influence is substracted from the right hand side function. Then the columns of the
divergence matrix corresponding to the boundary DOF's are cleared in line 351.

The boundary treatment for the Laplace operator is the same as in the Poisson problem.
(see 3.1.3).

5.1.5 Assembling the right hand side

As for the Poisson problem a discrete right hand side function is assembled. The struc-
tures used for the Poisson problem can be also used for the Stokes problem. How to
implement the right hand side function is described in 3.1.4. Although the right hand
side function f is a vectorial function, the assembler for the right hand side can be used
without further modification, due to the implementation of the basefunctions.

5.2 Parallelization

Currently not implemented.

73

6 Documentation and reference guide for Dune-Fem

The complete documentation of DUNE-FEM is done using the tool doxygen. You can find
this documentation online!. You can also build your own local doxygen documentation
by removing the flag -—~disable-documentation in your config.opts file (see listing
on page 8)

Some hints about using the doxygen documentation:

e The best way to start is from the page modules.html which gives you access to the
documentation by category.

e A list of the central interface classes can be found on page interfaceclass.html.

e A summary of the main features and concepts of DUNE-FEM can be found on the
page group__FEM.html.

e Newly added implementations are linked on the page newimplementation.html.

http://dune.mathematik.uni-freiburg.de/doc/html-current

74

http://dune.mathematik.uni-freiburg.de/doc/html-current/modules.html
http://dune.mathematik.uni-freiburg.de/doc/html-current/interfaceclass.html
http://dune.mathematik.uni-freiburg.de/doc/html-current/group__FEM.html
http://dune.mathematik.uni-freiburg.de/doc/html-current/newimplementation.html
http://dune.mathematik.uni-freiburg.de/doc/html-current

Bibliography

[1] DuNE — Distributed and Unified Numerics Environment. URL http://www.
dune-project.org/.

[2] DuNE-FEM Doxygen Documentation. URL http://dune.mathematik.
uni-freiburg.de/doc/html-current/index.html.

[3] DuNE-FEM The FEM Module. URL http://dune.mathematik.uni-freiburg.de.

[4] P. Bastian, M. Blatt, A. Dedner, Ch. Engwer, R. Kléfkorn, M. Ohlberger, and
O. Sander. The DUNE-GRID howto. URL http://www.dune-project.org/doc/
grid-howto/grid-howto.pdf.

[5] A. Dedner, R. Kléfkorn, M. Nolte, and M. Ohlberger. A generic interface for par-
allel and adaptive scientific computing: Abstraction principles and the DUNE-FEM
module. Preprint No. 3, Mathematisches Institut, Universitat Freiburg, 2009. URL
http://dune.mathematik.uni-freiburg.de.

[6] A. Dedner, R. Kléfkorn, M. Nolte, and M. Ohlberger. A generic interface for paral-
lel and adaptive discretization schemes: abstraction principles and the DUNE-FEM
module. Computing, 89(1), 2010. URL http://www.springerlink.com/content/
vj103u6079861001/.

=)

D. Kroner. Numerical Schemes for Conservation Laws. Wiley-Teubner, 1997.

=)

M. Ohlberger and A. Dedner. Wissenschaftliches Rechnen und Anwendungen
in der Stromungsmechanik (in german), 2006. URL http://www.mathematik.
uni-freiburg.de/IAM/Teaching/ubungen/sci_com_SS06/skriptum.pdf.

For a more complete list of publications see also: http://www.dune-project.org/
publications.html

75

http://www.dune-project.org/
http://www.dune-project.org/
http://dune.mathematik.uni-freiburg.de/doc/html-current/index.html
http://dune.mathematik.uni-freiburg.de/doc/html-current/index.html
http://dune.mathematik.uni-freiburg.de
http://www.dune-project.org/doc/grid-howto/grid-howto.pdf
http://www.dune-project.org/doc/grid-howto/grid-howto.pdf
http://dune.mathematik.uni-freiburg.de
http://www.springerlink.com/content/vj103u6079861001/
http://www.springerlink.com/content/vj103u6079861001/
http://www.mathematik.uni-freiburg.de/IAM/Teaching/ubungen/sci_com_SS06/skriptum.pdf
http://www.mathematik.uni-freiburg.de/IAM/Teaching/ubungen/sci_com_SS06/skriptum.pdf
http://www.dune-project.org/publications.html
http://www.dune-project.org/publications.html

	What is Dune-Fem?
	Available example implementations using Dune-Fem
	The Dune Core Modules
	Available Grid Implementations
	Download and installation
	Create your own project

	The Transport-Example with Dune-Fem
	A Tiny Introduction to Finite Volume Schemes
	Implementation overview
	The [basicstyle=]!main! function
	The basic algorithm
	The methods initialize and compute

	Parallelization

	Solving the Poisson problem
	Implementation
	Algorithm
	Assembling the Laplace operator
	Boundary treatment
	Assembling the right hand side

	Adaptation
	Parallelization

	An LDG solver for Advection-Diffusion Equations
	Advection-Diffusion Equation
	Implementation overview
	Main Loop
	Stepper control class
	Setting up an LDGPass
	Implementing your own Pass Operator
	Visualisation and EOC Output

	Solving the Stokes problem
	Implementation
	Algorithm
	Assembling the Laplace operator
	Assembling the discrete divergence operator
	Boundary treatment
	Assembling the right hand side

	Parallelization

	Documentation and reference guide for Dune-Fem

