
Building Dune with CMake - Frequently

Asked Questions

Dominic Kempf∗ and Christoph Grüninger♠

September 25, 2015

∗Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg,
Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

♠Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart,
Pfaffenwaldring 61, D-70569 Stuttgart, Germany

Contents

1 What is CMake anyway? 3

2 How do I use Dune with CMake? 3

3 What files in a dune module belong to the CMake build system? 3

4 How do I port an existing module? 4

5 How do I modify the flags and linked libraries of a given target? 5

6 How do I link against external libraries, that are not checked for by Dune? 5

7 What is an out-of-source build? 5

8 What is the new simplified build system and how do I use it? 6

9 How do I change my compiler and compiler flags? 6

10 How should I handle ini and grid files in an out-of-source-build setup? 7

11 How do I use CMake with IDEs? 7

12 I usually modify my CXXFLAGS upon calling make. How can I do this in CMake? 7

13 How do I run the test suite from CMake? 8

14 Where can I get a list of all configuration options? 8

1



15 Can I disable an external dependency? 8

16 How do I switch between parallel and sequential builds? 8

17 Why is it not possible anymore to do make headercheck? 8

18 How do I troubleshoot? 8

19 Where can I get help? 9

2



This document collects some frequently asked questions about building Dune with the new
CMake build system. It is nowhere near complete and does not intend to be a technical
documentation of the build system. Instead, it tries to sum up the essentials of the build
system to users that do not (want to) care about the build system.

1 What is CMake anyway?

CMake...

• is an open source buildsystem tool developed at KITware.

• offers a one-tool-solution to all building tasks, like configuring, building, linking, testing
and packaging.

• is a build system generator: It supports a set of backends called “generators”

• is portable

• is controlled by ONE rather simple language

Dune got support for CMake in version 2.3 alongside the old Autotools build system. It got
the default in the 2.4 release. After that release, the Autotools build system will be removed
from the master branch.
You can install cmake through your favorite package manager or downloading source code
from www.cmake.org. The minimum required version to build Dune with CMake is 2.8.6.

2 How do I use Dune with CMake?

As with the Autotools, the build process is controlled by the script dunecontrol, located in
dune-common/bin. There is a compatibility layer that will translate all the configure flags from
your opts file into the corresponding CMake flags. While this is a great tool to determine
how to do the transition, in the long run you should switch to a CMake-only approach.
dunecontrol will pickup the variable CMAKE_FLAGS from your opts file and use it as command line
options for any call to CMake. There, you can define variables for the configure process with
CMakes -D option; just as with the C pre-processor.
The most important part of the configure flags is to tell the build system where to look for
external libraries. You can either use the variable CMAKE_PREFIX_PATH for that or set the variable
given in the documentation of the corresponding find module (see below for details).

3 What files in a dune module belong to the CMake build system?

Every directory in a project contains a file called CMakeLists.txt, which is written in the CMake
language. You can think of these as a distributed configure script. Upon configure, the top-
level CMakeLists.txt is executed. Whenever an add_subdirectory command is encountered, the
CMakeLists.txt of that sub-directory is executed. The top-level CMakeLists.txt is special, because
it sets up the entire Dune module correctly. You should not delete the auto-generated parts
of it.
Additionally, a Dune module can export some cmake modules. A cmake module is a file that
contains one or more build system macros meant for downstream use. If a module provides
modules, they can be found in the subfolder cmake/modules. The module

3



dune -foo/cmake/modules/DuneFooMacros.cmake

is special: Its contents are always executed when configuring the module dune-foo or any other
Dune module, that requires or suggests the module dune-foo. This is the perfect place to put
your checks for external packages, see section 6 below.
The file config.h.cmake defines a template for the section of config.h, that is generated by the
module.
The file stamp-regenerate-config-h also belongs to the CMake build system. You can trigger
regeneration of config.h by touching it.

4 How do I port an existing module?

There is multiple approaches to this:

• First, check section 8 and decide whether such simple approach is sufficient for your
project.

• There is the python script dune-common/bin/am2cmake.py, which automatically generates
CMakeLists.txt’s from its Makefile.am counterparts. While this works fine, for many modules
the resulting files look very autotoolish and are often too complicated.

• Copy the top-level CMakeLists.txt file from a freshly generated Dune module (you still
need to adjust the project name to have it match the module name) and write all
other CMakeLists.txt by hand. This sounds cumbersome, but its actually not very much
work if you read below advices.

In order to write your own CMakeLists.txt files you should be aware of the following basic
commands of the CMake language.

• add_subdirectory(dir) immediately executes the CMakeLists.txt in the dir subfolder.

• add_executable(target src1 [, src2 ..]) adds an executable named target. Note that, unlike
in autotools, target names have to be unique throughout the entire project. The
given sources are the *.cc files that are used to determine the dependencies of the
target. Configuring the targets with the correct flags and linked libraries is described
in section 5.

• add_test(testname execname [args..]) registers a test. If execname matches a target name within
the project, it is automatically replaced with the corresponding executable, but any
executable may be given.

• install(FILES files DESTINATION dest)
1 Use to define the install location of a list of headers.

For a detailed reference, use:

cmake --help -command <command >

If your module requires any other packages than the dune modules listed in your dune.module

file, you should also use the command find_package in the module dune-foo/cmake/modules/DuneFooMacros.cmake

(as mentioned in section 3). How to do this with external packages not yet supported by
Dune is covered in section 6.
1Note that CMake uses positional arguments for some commands and named arguments for more com-

plicated ones. If you ever happen to write your own macro, try going for named arguments using the

module CMakeParseArguments

4



5 How do I modify the flags and linked libraries of a given target?

Again, there are multiple ways to do this. The Dune build system offers macros to make this
task as easy as possible. For each external module, there is a macro add_dune_*_flags(targets).
Those macros should cover most flags. Example usage:

add_executable(foo foo.cc)
add_dune_umfpack_flags(foo)
add_dune_mpi_flags(foo)

There is also the macro add_dune_all_flags(targets), which uses the same flag registry mechansim
then the simplfied build system in section 8.
If you want to fully control the configuration of the targets, you can do so. Build system
entities such as targets, directories and tests do have so called properties in CMake. You
can access and modify those properties via the commands get_property and set_property. You
can for example use those to modify a targets COMPILE_DEFINITIONS or INCLUDE_DIRECTORIES property:

add_executable(foo foo.cc)
set_property(TARGET foo APPEND PROPERTY COMPILE_DEFINITIONS <somedefinition >)
set_property(TARGET foo APPEND PROPERTY INCLUDE_DIRECTORIES <somepath >)

For a full list of properties, check the manual:

cmake --help -property -list

Manually linking libraries can be done through the target_link_libraries command instead of
manually tweaking properties.

6 How do I link against external libraries, that are not checked for by Dune?

While there might be many solutions that make your application work, there is only one
clean solution to this: You have to provide a find module for the package. A find mod-
ule is a CMake module that follows a specific naming scheme: For an external package
called SomePackage it is called FindSomePackage.cmake. Note that CMake treats package names
case sensitive. If CMake encounters a find_package(SomePackage) line, it searches its module
include paths for this find module. A good read to get started writing a find module is
How to find Libraries in the CMake wiki.
Depending on how common your external package is, you may not even need to write the
find module on your own. You can have a look at the list of find modules shipped by CMake
2 or simply search the internet for the module name and profit from other open-source
project’s work.
It is considered good style to also provide a macro add_dune_somepackage_flags(targets).

7 What is an out-of-source build?

An out-of-source build does leave the version-controlled source tree untouched and puts all
files that are generated by the build process into a different directory – the build directory.
The build directory does mirror your source tree’s structure as seen in the following figure:

2Linux distributions may put them at /usr/share/cmake-<version>/modules or /usr/share/cmake/modules

5

http://www.cmake.org/Wiki/CMake:How_To_Find_Libraries


dune-foo/

CMakeLists.txt

dune/

foo/

CmakeLists.txt

src/

CMakeLists.txt

⇒

build-dune-foo/

Makefile

dune/

foo/

Makefile

src/

Makefile

Using the Unix Makefiles generator, your Makefiles are generated in the build tree, so that is
where you have to call make. There are multiple advantages with this approach, such as a
clear separation between version controlled and generated files and you can have multiple
out-of-source builds with different configurations at the same time.
Out-of-source builds are the default with CMake. In-source builds are strongly discouraged.
By default, a subfolder build-cmake is generated within each dune module and is used
as a build directory. You can customize this folder through the --builddir option of
dunecontrol. Give an absolute path to the --builddir option, you will get something like
this:

build/

dune-common/

Makefile

dune-foo/

Makefile

8 What is the new simplified build system and how do I use it?

Dune offers a simplified build system, where all flags are added to all targets and all libraries
are linked to all targets. You can enable the feature with:

dune_enable_all_packages(INCLUDE_DIRS [include_dirs]
COMPILE_DEFINITIONS [compile_definitions]
MODULE_LIBRARIES [libraries]
[VERBOSE] [APPEND]

)

This will modify all targets in the directory of the CMakeLists.txt, where you put this, and also
in all sub-directories. The compile flags for all found external packages are added to those
targets and the target is linked against all found external libraries. The VERBOSE option will
prompt those flags upon configure. This is especially useful for application modules.
To use this while using custom external packages, you have to register your flags. Check the
module

dune -common/cmake/modules/DuneEnableAllPackages.cmake

Some special care has to be given, if your module does build one or more library which
targets within the module do link against. Carefully read the in-module documentation of
above module in that case.

9 How do I change my compiler and compiler flags?

In general, there are multiple ways to do this:

• Setting the CMake variables CMAKE_{C,CXX}_COMPILER from the opts file

6



• Setting those variables within the project with the set command

• Setting the environment variables CC, CXX etc.

The first option is the recommended way. Whenever you change your compiler, you should
delete all build directories. For some CMake versions, there is a known CMake bug, that
requires you to give an absolute path to your compiler, but Dune will issue a warning, if you
violate that.
You can modify your default compiler flags by setting the variables CMAKE_{C,CXX}_FLAGS in your
opts file. Note, you can define build-type specific flags with CMAKE_{C,CXX}_FLAGS_{DEBUG,RELEASE}.
You can switch the build type with CMAKE_BUILD_TYPE={Release,Debug}.

10 How should I handle ini and grid files in an out-of-source-build setup?

Such files are under version control, but they are needed in the build directory. The module

dune -common/cmake/modules/DuneSymlinkOrCopy.cmake

delivers macros for that purpose.
The simplest way to solve the problem is to add -DDUNE_SYMLINK_TO_SOURCE_TREE=1 to
your opts file. This will execute dune_symlink_to_source_tree() to your top-level CMakeLists.txt.
This will add a symlink src_dir to all subdirectories of the build directory, which points to
the corresponding directory of the source tree. This will only work on platforms that support
symlinking. For other (more portable) solutions, check the documentation of above module.

11 How do I use CMake with IDEs?

As already said, CMake is merely a build system generator with multiple backends (called
a generator). Using IDEs requires a different generator. Check cmake --help for a list of
generators. You can then add the -G to the CMAKE_FLAGS in your opts file, like:

-G’Eclipse CDT4 - Unix Makefiles ’

Note that the generator name has to match character by character, including case and
spaces.

12 I usually modify my CXXFLAGS upon calling make. How can I do this in CMake?

This violates the CMake philosophy and there is no clean solution to achieve it. The CMake-
ish solution would be to have for each configuration one out-of-source build. We have
nevertheless implemented a workaround. It can be enable by setting ALLOW_CXXFLAGS_OVERWRITE=ON

in your opts file. You can then type:

make CXXFLAGS="<your flags >" <target >

Furthermore any C pre-processor variable of the form -DVAR=<value> can be overloaded on the
command line and the grid type can be set via GRIDTYPE="<grid type>".
Note this only works with generators that are based on Makefiles and several Unix tools like
bash must be available.

7



13 How do I run the test suite from CMake?

The built-in target to run the tests is called test instead of Autotools’ check. It is a mere
wrapper around CMake’s own testing tool CTest. You can check ctest --help for a lot of
useful options, such as choosing the set of tests to be run by matching regular expressions
or showing the output of failed tests.
Although this is not the CMake-ish way, make test also builds the tests before executing them.
This behavior will change in the near future.

14 Where can I get a list of all configuration options?

There are two ways. Either use ccmake which is a graphical user interface and shows you all
variables and their values after a configure run. You can edit these values, too. Or add -LH

to the CMake call, then CMake will print all variables and their values after configuration.
There is nothing comparable to Autotools’ configure --help.

15 Can I disable an external dependency?

To disable an external dependency Foo, add

-DCMAKE_DISABLE_FIND_PACKAGE_Foo=TRUE

to your opts file. The name of the dependency is case sensitive but there is no canonical
naming scheme; it can be FOO, Foo, or even something else. See the output of configure to get
the right name.
Make sure to not use cached configure results by deleting the cache file or the build directory,
cf. 18.

16 How do I switch between parallel and sequential builds?

Dune builds with CMake are parallel if and only if MPI is found. To have a sequential
build despite an installed MPI library, you have to explicitly disable the corresponding find
module by setting

-DCMAKE_DISABLE_FIND_PACKAGE_MPI=TRUE

in the CMAKE_FLAGS of your opts file.

17 Why is it not possible anymore to do make headercheck?

The headercheck feature has been disabled by default. You can enable it by setting the
CMake variable ENABLE_HEADERCHECK=1 through your opts file. This step has been necessary,
because of the large amount of additional file the headercheck adds to the build directory.
A better implementation has not been found yet, because it simply does not fit the CMake
philosophy.

18 How do I troubleshoot?

CMake caches aggressively which makes it bad at recognizing changed configurations.

8



To trigger a fresh run of configure, you can delete the CMakeCache.txt file from the build directory
and maybe save some compilation time afterward.
Whenever you experience any problems, your first step should be to delete all build direc-
tories. Nice trick:

dunecontrol exec rm -rf build -cmake

This will remove all build directories from all DUNE modules.
Later on you can get an error log from the file CMakeError.log in the CMakeFiles sub-directory
of your build directory. This is what you should send to the mailing list alongside the
description of your setup and efforts to help us help you.

19 Where can I get help?

The CMake manual is available on the command line:

• cmake --help-command-list

• cmake --help-command <command>

• cmake --help-property-list

• cmake --help-property <property>

• cmake --help-module-list

• cmake --help-module <module>

To get help on which variables are picked up by CMake, there is a CMake wiki page collecting
them. Of course, there is also Google, StackOverflow and the CMake Mailing list (archive).
For problems specific to DUNE’s build system, ask on our mailing lists.

9


	What is CMake anyway?
	How do I use Dune with CMake?
	What files in a dune module belong to the CMake build system?
	How do I port an existing module?
	How do I modify the flags and linked libraries of a given target?
	How do I link against external libraries, that are not checked for by Dune?
	What is an out-of-source build?
	What is the new simplified build system and how do I use it?
	How do I change my compiler and compiler flags?
	How should I handle ini and grid files in an out-of-source-build setup?
	How do I use CMake with IDEs?
	I usually modify my CXXFLAGS upon calling make. How can I do this in CMake?
	How do I run the test suite from CMake?
	Where can I get a list of all configuration options?
	Can I disable an external dependency?
	How do I switch between parallel and sequential builds?
	Why is it not possible anymore to do make headercheck?
	How do I troubleshoot?
	Where can I get help?

