
The dune-localfunctions module

The Dune Team

February 10, 2014

Abstract

This document describes the dune-localfunctions module. The module pro-
vides a C++ interface for shape functions needed in finite element methods. A
growing list of implementations of this interface is included. dune-localfunctions
is part of the Distributed and Unified Numerics Environment (Dune) which is avail-
able from the site http://www.dune-project.org/.

Contents

1 Introduction 1

1.1 Static vs. Dynamic Interfaces . . 1
1.2 Dependencies on other Modules . 2

2 The LocalFiniteElement Interface 2

2.1 The LocalBasis Classes 3
2.2 The LocalCoefficients Classes 4
2.3 The LocalInterpolation Classes 4

3 The Dynamic Interface 5

3.1 The Virtual Interface 5
3.2 The Virtual Wrappers 7

4 Global-valued Finite Elements 10

4.1 Geometry 11

4.1.1 Gradient Transformation 12
4.1.2 Raviart-Thomas Elements – Piola Transformation
4.1.3 Edge Elements 13
4.1.4 Conclusions 14

4.2 Vertex Ordering 14
4.3 Matching Multiple Dofs on a Common Sub-Entity 16
4.4 Flipping of Base Function Values 16

4.4.1 Tangential Orientation for Lines 17
4.4.2 Normal Orientation for Codimension 1 Sub-Entities

4.5 API 18
4.5.1 Finite Element Interface . 18
4.5.2 Finite Element Factory Interface 19
4.5.3 Basis Interface 20
4.5.4 Interpolation Interface . . 21

4.6 Coefficients Interface 22

5 Appendix: List of Available Elements 22

1 Introduction

A feature common to all implementations of finite element methods are the shape func-
tions. In the easier cases, these are polynomial functions defined on a reference element
and associated to some face of the reference element. The more complicated non-affine
finite elements generalize this by defining the shape functions directly on an element in
the grid.

Implementations of shape functions are contained in all finite element codes, but in
most cases their implementation is so intertwined with the rest of the code as to make
their reuse in other situations impossible. For the easier shape functions this may not
matter much, as they are fairly easy to implement. Still, errors can occur and bugs in
shape function implementations can be difficult to detect and track down. More exotic
shape function implementations can get fairly involved and require meticulous care to be
done right. For these reasons it is very desirable to provide shape functions in a separate,
reusable library. This is what the dune-localfunctions module tries to do.

Following the UNIX philosophy of having each program doing only one thing, but
doing that thing well, the dune-localfunctions module provides only local and global
finite elements. There are two sides to this.

1

http://www.dune-project.org/

1. dune-localfunction prescribes an interface to shape functions. This interface
should be general enough to encompass the needs of virtually all implementors of
finite element codes.

2. The module contains implementations of this interface. The set of implementations
contains common elements like the Lagrange elements and exotic ones as well. We
aim to collect contributions from outside sources and, in time, to be able to provide
a shape function library that is virtually complete.

1.1 Static vs. Dynamic Interfaces

From a textbook C++ perspective, an interface to finite element shape functions can
be described naturally using dynamical polymorphism. An abstract base class would
describe all methods expected from a shape function implementation, and actual imple-
mentations would derive from the base class. Users of shape functions, such as finite
element assemblers, would receive shape function implementations through pointers to
the abstract base class.

However, the run-time overhead of virtual function calls is considered prohibitive by
some users. We measured a slowdown of around 7% when assembling a Laplace stiffness
matrix on a two-dimensional structured grid. This can be relevant, for example, in
an explicit time-stepping method where a large percentage of the overall time is spent
assembling matrices.

We have therefore opted for a different way. In dune-localfunctions, the imple-
mentation classes are not organized in a hierarchy. Adherence to a certain interface is
enforced only implicitly, by a test suite. Finite element assemblers have to have the C++
type of the shape function implementation as a template parameter, and can then call
the object’s methods directly. The static interface is described in Section 2.

Of course such a scheme makes it impossible to select shape function sets at run-time.
For example, p-adaptive methods, and methods on grids with more than a single element
type are precluded. Therefore, dune-localfunctions offers a second way to access its
shape functions. There is a set of wrapper classes, which are organized in a hierarchy
using dynamical polymorphism. These wrapper classes are statically parametrized with a
static implementation class and forward the function calls to this implementation. Details
of this dynamic interface are given in Section 3.

1.2 Dependencies on other Modules

When designing the dune-localfunctions module we have deliberately tried to keep
dependencies on otherDunemodules to a minimum. Ideally, people should be able to use
the shape functions from Dune without having to use anything else from Dune. The
only exception here are dune-common and dune-geometry which most Dune modules
depend on.

In addition dune-localfunctions suggests dune-grid which is mainly used in tests.

2 The LocalFiniteElement Interface

The interface of a LocalFiniteElement is designed to provide the user with all the
functionality needed for the implementation of finite element methods. The functionality
consists of three subtasks. These are handled by separate classes which can be obtained
from the LocalFiniteElement class.

2

1. The assembly of the local stiffness matrices usually requires the evaluation of the
shape functions and/or their derivatives of a certain order k on the reference ele-
ment. These features are collected in a LocalBasis class.

2. For the correct distribution of the local matrices to the global stiffness matrix
one needs to associate the individual shape functions to subentities (i.e., vertices,
faces, elements,. . .) of the reference element. This information is provided by a
LocalCoefficients class. An IndexSet class can then be used to obtain global
indices for each shape function.

3. Finally one needs to interpolate given functions by the shape functions. This func-
tionality is provided by the LocalInterpolation class.

Motivated by these points the interface of a LocalFiniteElement is given by:

class LocalFiniteElementVirtualInterface

{

// e x p o r t t r a i t s
typedef LocalFiniteElementTraits <LocalBasisImpl ,

LocalCoefficientsImpl , LocalInterpolationImpl > Traits;

// a c c e s s t o t h e l o c a l b a s i s imp l emen ta t i on
const Traits :: LocalBasisType& localBasis () const;

// a c c e s s t o t h e l o c a l c o e f f i c i e n t imp l emen ta t i on
const Traits :: LocalCoefficientsType & localCoefficients () const;

// a c c e s s t o t h e l o c a l i n t e r p o l a t i o n imp l emen ta t i on
const Traits :: LocalInterpolationType& localInterpolation () const;

// geometry t y p e t h e l o c a l b a s i s l i v e s on
GeometryType type() const;

};

The LocalFiniteElementTraits class is a simple traits helper struct that can be used
for the export of the class traits.

Each local finite element has to provide an implementation of the three classes that
are described in the next sections.

2.1 The LocalBasis Classes

The LocalBasis class represents the set of shape functions:

class LocalBasisInterface

{

// e x p o r t t y p e t r a i t s f o r shape f u n c t i o n s i g n a t u r e
typedef LocalBasisTraits <DF ,n,D,RF,m,R,J> Traits;

//number o f shape f u n c t i o n s
unsigned int size () const;

// e v a l u a t e a l l shape f u n c t i o n s a t a g i v e n p o s i t i o n
inline void

3

evaluateFunction(const typename Traits :: DomainType& in ,

std::vector <typename Traits ::RangeType >& out) const;

// e v a l u a t e Jacob ian o f a l l shape f u n c t i o n s a t a g i v e n p o s i t i o n
inline void

evaluateJacobian(const typename Traits :: DomainType& in ,

std::vector <typename Traits :: JacobianType >& out) const;

// e v a l u a t e g e n e r a l d e r i v a t i v e o f k−t h o rde r o f a l l shape f u n c t i o n s
template <unsigned int k>

inline void

evaluate (const typename Dune::array <int ,k>& directions ,

const typename Traits :: DomainType& in,

std::vector <typename Traits ::RangeType >& out) const;

// po l ynomia l o rde r o f t h e shape f u n c t i o n s
unsigned int order () const;

};

The LocalBasisTraits class is a traits helper class which holds information on how
the signature of the shape functions is represented in C++ types. A description of the
template parameter above can be found in the doxygen documentation of the traits class.

2.2 The LocalCoefficients Classes

To describe the position of the degrees of freedom (shape functions) of a LocalFinite-

Element it is assumed that each degree of freedom can be attached to a subentity of the
underlying reference element. For every degree of freedom we thus have

1. the local number of the associated subentity s,

2. the codimension of the subentity c,

3. the index in the set of all shape functions associated to this subentity t.

These informations are stored in the LocalKey class, which allows access to the entries by
the methods subEntity(), codim(), and index(). For the correct local numbering of the
subentities see the documentation of the ReferenceElements at http://dune-project.org.

The LocalCoefficient class now associates the indices of the shape function with
their corresponding LocalKeys.

class LocalCoefficientsInterface

{

// number o f c o e f f i c i e n t s
std:: size_t size () const;

// g e t i−t h i nde x
const LocalKey& localKey (std:: size_t i) const;

};

4

http://dune-project.org

2.3 The LocalInterpolation Classes

class LocalInterpolationVirtualInterface

{

// e x p o r t l o c a l b a s i s t r a i t s
LocalBasisInterface :: Traits Traits;

// l o c a l i n t e r p o l a t i o n o f a f u n c t i o n
template <typename F, typename C>

void interpolate (const F& f, std::vector <C>& out) const;

};

The LocalInterpolation class provides a method to interpolate a given function and
that returns a coefficient vector for the shape functions. The function class to interpolate
must provide a method evaluate(const Traits::DomainType& x, Traits::RangeType& y),
which is used to evaluate the function on the reference element of the corresponding ge-
ometry type.

3 The Dynamic Interface

In some situations one doesn’t know at compile time which shape function set is needed.
This happens for example when grids with several element types are involved or p-
adaptive methods are used. For this case dune-localfunctions provides a way to
select shape functions at run-time. As already described above the implementations of
LocalFiniteElements are not organized in a hierarchy. Thus, to use dynamic poly-
morphism we first need a virtual interface and to avoid copying the code we also need
a way to re-arrange the existing shape function implementations in a hierarchy. This
re-arrangement is done with the help of virtual wrapper classes which take a static im-
plementation as template parameter and forward the dynamic function calls to that
implementation.

3.1 The Virtual Interface

From Section 2 we know that in dune-localfunctions a LocalFiniteElement consists
of a LocalBasis, LocalCoefficients, and LocalInterpolation class. So if we want
to design a virtual interface for a LocalFiniteElement we first need to define abstract
base classes for these three classes.

LocalBasisVirtualInterface The LocalBasisVirtualInterface is organized in a
recursive hierarchy of the form

template <class T>

class LocalBasisVirtualInterface :

public virtual LocalBasisVirtualInterface <LowerOrderLocalBasisTraits <T> >

{

typedef LocalBasisVirtualInterface <LowerOrderLocalBasisTraits <T> > Base;

public:

typedef T Traits;

using Base::size;

using Base::order;

using Base:: evaluateFunction;

using Base:: evaluateJacobian;

5

virtual void evaluate (

const typename Dune:: template array <int ,Traits ::diffOrder >& directions ,

const typename Traits :: DomainType& in,

std::vector <typename Traits ::RangeType >& out) const = 0;

};

The LowerOrderLocalBasisTraits defines a LocalBasisTraits class (see 2) with diffOrder
reduced by one (the diffOrder of a LocalBasis specifies the maximal order of imple-
mented partial derivatives). This hierarchy is needed because each LocalBasis imple-
mentation is assumed to have a template method evaluate<unsigned int k>(Dune::array<int,k> directions

where k denotes the total order of mixed partial derivatives to be computed. In the dy-
namic case this method has to be replaced by non-template methods evaluate(Dune::array<int,fixedOrder
and the hierarchy just makes sure that there will be a corresponding method for all
0 ≤fixedOrder≤ diffOrder. Finally a template specialization for the case diffOrder = 0

provides all pure virtual methods that belong to a LocalBasis. In the online class
documentation of dune-localfunctions you will find another interface class called
LocalBasisVirtualInterfaceBase: The virtual interface additionally provides a non-
virtual template method evaluate which internally calls the non-template evaluate

method. For name resolution reasons this method can thus not be defined in the same
class, so there is a second base class, the LocalBasisVirtualInterfaceBase, which lies
between two diffOrder - levels and that contains this additional method. Note that in
applications you should always use the standard LocalBasisVirtualInterface class.

LocalCoefficientsVirtualInterface The LocalCoefficientsVirtualInterface is
just the straightforward base class containing the pure virtual methods:

class LocalCoefficientsVirtualInterface

{

public:

virtual ~LocalCoefficientsVirtualInterface () {}

// ! number o f c o e f f i c i e n t s
virtual std:: size_t size () const = 0;

// ! g e t i ’ t h i nde x
const virtual LocalKey& localKey (std:: size_t i) const = 0;

};

LocalInterpolationVirtualInterface For the LocalInterpolationVirtualInterface
we need a similar construction as for the LocalBasisVirtualInterface. Again we have a
template method in the static LocalInterpolation interface, namely interpolate<typename F, typename

which has to be replaced by a non-template method in the dynamic interface. Since we
also want to define some non-virtual template methods interpolate in the interface we
again need another abstract base class because of name resolution.

template <class DomainType , class RangeType >

class LocalInterpolationVirtualInterfaceBase

{

6

public:

// ! t y p e o f v i r t u a l f u n c t i o n t o i n t e r p o l a t e
typedef Dune:: VirtualFunction <DomainType , RangeType > FunctionType;

// ! t y p e o f t h e c o e f f i c i e n t v e c t o r in t h e i n t e r p o l a t e method
typedef typename RangeType :: field_type CoefficientType ;

virtual ~LocalInterpolationVirtualInterfaceBase () {}

virtual void interpolate (const FunctionType& f,

std::vector <CoefficientType >& out) const = 0;

};

Now the LocalInterpolationVirtualInterface derives from this class and addition-
ally contains non-virtual template versions of the interpolate method which wrap the
template parameter FunctionType into a VirtualFunction and then call the virtual
base method.

You can get a proper type for functions to use with LocalInterpolation by using
LocalFiniteElementFunctionBase<class FE>::type which is the VirtualFunction

interface class if FE implements the virtual interface and the Function base class other-
wise.

Due to the LocalBasisVirtualInterface structure the LocalFiniteElementVirtualInterface
is also organized in a hierarchy differing in the order of implemented derivatives.

template <class T>

class LocalFiniteElementVirtualInterface

: public virtual LocalFiniteElementVirtualInterface <typename

LowerOrderLocalBasisTraits <T>:: Traits >

{

typedef LocalFiniteElementVirtualInterface <typename

LowerOrderLocalBasisTraits <T>:: Traits > BaseInterface;

public:

typedef LocalFiniteElementTraits <

LocalBasisVirtualInterface <T>,

LocalCoefficientsVirtualInterface ,

LocalInterpolationVirtualInterface <

typename T:: DomainType ,

typename T::RangeType > > Traits;

virtual const typename Traits :: LocalBasisType& localBasis () const = 0;

using BaseInterface :: localCoefficients ;

using BaseInterface :: localInterpolation;

using BaseInterface ::type;

virtual LocalFiniteElementVirtualInterface <T>* clone () const = 0;

};

While all other member functions are forwarded to the uppermost base class (a tem-
plate specialization for the case diffOrder=0) the localBasis() method has to be

7

provided by every class in the hierarchy since the LocalBasisType depends on the
diffOrder. The “virtual copy constructor” clone is needed whenever you want to copy
a LocalFiniteElement which derives from the virtual interface and thus the declared
type is not equal to the real type.

3.2 The Virtual Wrappers

As already described above in dune-localfunctions the shape functions are not orga-
nized in a hierarchy and so since we want to use dynamic polymorphism we would need
other shape functions that derive from the virtual interface. Now instead of implement-
ing all the LocalFiniteElements a second time we use virtual wrapper class that are
statically parametrized by a LocalFiniteElement (resp. LocalBasis, etc.) and that
derive from the virtual interface. The wrapper classes implement the virtual functions
by forwarding them to the static functions. The classes look all very similar and so we
only state the LocalCoefficientsVirtualImp—the wrapper for the LocalCoefficient
class:

template <class Imp >

class LocalCoefficientsVirtualImp

: public LocalCoefficientsVirtualInterface

{

template <class FEImp >

friend class LocalFiniteElementVirtualImp ;

protected:

// c o n s t r u c t o r t a k i n g an imp l emen ta t i on o f t h e
// Dune : : L o c a l C o e f f i c i e n t s V i r t u a l I n t e r f a c e
LocalCoefficientsVirtualImp(const Imp &imp)

: impl_(imp)

{}

public:

std:: size_t size () const

{

return impl_.size ();

}

const LocalKey& localKey (std:: size_t i) const

{

return impl_.localKey(i);

}

protected:

const Imp& impl_;

};

Of course the LocalBasisVirtualImpl classes must again be organized in a hierarchy
differing in the diffOrder and each class forwards the evaluate method to the template
function of the static implementation:

8

impl_.template evaluate<Traits::diffOrder>(directions, in, out) or in the case
diffOrder=0 to the evaluateFunction method.

Finally the wrapper class for the LocalFiniteElement is given by

template <class Imp >

class LocalFiniteElementVirtualImp

: public virtual LocalFiniteElementVirtualInterface <typename

Imp:: Traits :: LocalBasisType ::Traits >

{

typedef typename Imp:: Traits :: LocalBasisType :: Traits T;

typedef LocalFiniteElementVirtualInterface <T> Interface;

public:

typedef typename Interface :: Traits Traits;

LocalFiniteElementVirtualImp (const Imp &imp)

: impl_(LocalFiniteElementCloneFactory <Imp >:: clone(imp)),

localBasisImp_(impl_ ->localBasis ()),

localCoefficientsImp_ (impl_ ->localCoefficients ()),

localInterpolationImp_(impl_ ->localInterpolation ())

{}

// De f a u l t c o n s t r u c t o r .
// Assumes t h a t t h e imp l emen ta t i on c l a s s i s d e f a u l t c o n s t r u c t i b l e
LocalFiniteElementVirtualImp ()

: impl_(LocalFiniteElementCloneFactory <Imp >:: create ()),

localBasisImp_(impl_ ->localBasis ()),

localCoefficientsImp_ (impl_ ->localCoefficients ()),

localInterpolationImp_(impl_ ->localInterpolation ())

{}

// Copy c o n t r u c t o r needed f o r deep copy
LocalFiniteElementVirtualImp (const LocalFiniteElementVirtualImp & other)

: impl_(LocalFiniteElementCloneFactory <Imp >:: clone (* other.impl_)),

localBasisImp_(impl_ ->localBasis ()),

localCoefficientsImp_ (impl_ ->localCoefficients ()),

localInterpolationImp_(impl_ ->localInterpolation ())

{}

~LocalFiniteElementVirtualImp ()

{

delete impl_;

}

const typename Traits :: LocalBasisType& localBasis () const

{

return localBasisImp_;

}

const typename Traits :: LocalCoefficientsType & localCoefficients () const

{

9

return localCoefficientsImp_ ;

}

const typename Traits :: LocalInterpolationType& localInterpolation () const

{

return localInterpolationImp_;

}

const GeometryType type () const

{

return impl_ ->type ();

}

virtual LocalFiniteElementVirtualImp <Imp >* clone () const

{

return new LocalFiniteElementVirtualImp <Imp >(* this);

}

protected:

const Imp* impl_;

const LocalBasisVirtualImp <T,

typename Imp:: Traits :: LocalBasisType > localBasisImp_;

const LocalCoefficientsVirtualImp <

typename Imp:: Traits :: LocalCoefficientsType > localCoefficientsImp_ ;

const LocalInterpolationVirtualImp <typename T::DomainType ,

typename T::RangeType ,

typename Imp:: Traits :: LocalInterpolationType > localInterpolationImp_;

};

The LocalFiniteElementCloneFactory class uses the clone method if the implemen-
tation derives from the virtual interface and otherwise uses the copy constructor. An
example on how the dynamic shape functions are used in applications can be found in
the PQkLocalFiniteElementCache class which is a factory for Lagrangian shape func-
tions of different order and type.

4 Global-valued Finite Elements

So far this document has talked about finite elements on reference elements. However,
the finite element is usually needed on an element of a grid. To evaluate a function
represented by a finite element basis on a particular grid element T with geometry µ we
can use the following formula:

u(x) =

NT−1
∑

i=0

ciPT,iϕi(µ
−1(x)) ∀x ∈ T (1)

The basis function ϕ on the reference element is provided by the local basis which was
described previously. The global basis takes this local basis and applies an operator
PT,i to the values it returns. This operator is dependent on the grid element T and the
number of the basis function i. The global basis thus provides values of the global basis
functions

Φi(x̂) = PT,iϕi(x̂) (2)

10

For the transformation P the following information about grid element is important:

1. The geometry µ of a grid element, which handles the transformation of coordinates
from the reference element to the grid element. But values of the base functions
and in particular their derivatives need to be transformed as well in general – the
correct transformation depends on the family of the finite element, the coordinate
transformation µ and the number of the base function i.

2. The vertex ordering τ of a grid element, which says how the grid elements vertices
are globally numbered in comparison to the numbering in the reference element.
This is needed to match multiple dofs on a common sub-entity between two grid
elements. Another use is to choose a consistent tangential orientation of edges for
edge elements.

3. The normal orientation of faces of a grid element. This is useful for instance for
Raviart-Thomas elements: their dofs orientation points from one of the neighbour-
ing elements into the other. This information can generally not be extracted from
the vertex ordering and geometry information alone.

This section explicitly does not deal with the following issues:

• Different geometry types for different grid elements. This will lead to different
number of basis functions and must already be dealt with in the local finite element.

• p-adaptivity. Again, this will lead to different number of basis functions and must
already be dealt with in the local finite element.

4.1 Geometry

The geometry information must be provided by a class basically modelling the interface of
GenericGeometry::BasicGeometry – that includes implementations of Geometry. The
precise requirements are as follows:

struct Geometry

{

// t y p e i n f o rma t i on
typedef implementation-defined ctype;

// l o c a l d imens ion
static const std:: size_t mydimension = implementation-defined;

// g l o b a l d imens ion
static const std:: size_t coorddimension = implementation-defined;

// some v e c t o r t y p e w i t h mydimension components o f t y p e c t y p e
typedef implementation-defined LocalCoordinate ;

// some v e c t o r t y p e w i t h coordd imens ion components o f t y p e c t y p e
typedef implementation-defined GlobalCoordinate;

// some matr i x t y p e w i t h coordd imens ion x mydimension
// components o f t y p e c t y p e
typedef implementation-defined JacobianInverseTransposed ;

// some matr i x t y p e w i t h mydimension x coordd imens ion
// components o f t y p e c t y p e
typedef implementation-defined JacobianTransposed;

// g e n e r a l p r o p e r t i e s o f t h e geometry

11

GeometryType type() const;

bool affine () const;

// a c c e s s t o t h e c o o r d i n a t e s o f t h e c o rne r s
std:: size_t corners () const;

GlobalCoordinate corner(std:: size_t) const;

// l o c a l t o g l o b a l and i n v e r s e mapping
GlobalCoordinate global(const LocalCoordinate &) const;

LocalCoordinate local(const GlobalCoordinate &) const;

// a c c e s s t o Jacob ian o f t h e mapping
const JacobianTransposed&

jacobianTransposed(const LocalCoordinate &) const;

const JacobianInverseTransposed &

jacobianInverseTransposed (const LocalCoordinate &) const;

// o t h e r i n f o rma t i on
GlobalCoordinate center () const;

ctype integrationElement(const LocalCoordinate &) const;

ctype volume () const;

GlobalCoordinate normal(std:: size_t face ,

const LocalCoordinate &) const;

};

For the exact meaning of these members look in the doxygen documentation for Geometry
or GenericGeometry::BasicGeometry.

The coordinate types (ctype, mydimension, coorddimension, LocalCoordinate,
and GlobalCoordinate) of a Geometry object provided when creating an instance of
a finite element should coincide with the coordinate types of that finite element’s basis
class.

4.1.1 Gradient Transformation

The transformation of a scalar function from the reference element to a grid element
using the geometry µ is trivial:

f̂(x̂) = f(µ(x̂)) (3)

The transformation of the gradient of such a function is a little bit more complicated.
First we will need to employ the Jacobian, which we define for a function u as:

Ju(x) =

∂0u0|x . . . ∂n−1u0|x
...

. . .
...

∂0um−1|x . . . ∂n−1um−1|x

(4)

This definition of the Jacobian lets us write a linear vector-valued function u in terms
of its Jacobian Ju as u(x) = Ju · x. For a scalar valued function f the gradient is the
transpose of the Jacobian:

∇f |x =

∂0f |x
...

∂n−1f |x

= JT

f (x) (5)

12

To do the actual transformation we employ the chain rule

Ĵ
f̂
(x̂) = Jf (µ(x̂)) · Ĵµ(x̂) (6)

After transposing, left-multiplying by Ĵ−T
µ (x̂) and replacing the transposed Jacobians by

gradient where applicable, we obtain

∇f |µ(x̂) = Ĵ−T
µ (x̂) · ∇̂f̂ |x̂ (7)

4.1.2 Raviart-Thomas Elements – Piola Transformation

Raviart-Thomas elements are finite elements that ensure continuity of the normal com-
ponent across grid elements. They do allow for jumps in the tangential components,
however. For these elements, the degrees-of-freedom (dofs) are usually associated with
the face (sub-entity of codimension 1) on which the normal component is non-zero.

x0 x1

x2

ϕ̂1

These elements have the following property:

ϕi(x) · nj = δij ∀x ∈ face j (8)

Here nj is the outer normal unit vector to face j and δij is the Kronecker delta. Naturally,
transforming the basis should preserve that property. This is achieved by the Piola-
transformation:

ϕi(µ(x̂)) =
Ĵµ(x̂)

|Ĵµ(x̂)|
ϕ̂i(x̂) (9)

4.1.3 Edge Elements

Edge elements are used in finite element electro-magnetics. In the lowest order, their
dofs are associated with edges, i.e. sub-entities of dimension 1. They can be expressed in
terms of first order node-based Lagrange finite elements Li as follows:

N i = ℓi(Li0∇Li1 − Li1∇Li0) (10)

Here i0 and i1 are the indices of the nodes at the endpoints of edge i and ℓi is the length
of edge i.

x0 x1

x2

N̂1

Edge elements have a similar property as Raviart-Thomas elements: the tangential
component is 1 on the associated edge and 0 on all other edges:

N i(x) · tj = δij ∀x ∈ edge j (11)

13

For the transformation we make the ansatz

N i(µ(x̂)) = αiAN̂ i(x̂) (12)

with the scalars αi and a matrix A. We express N i and N̂ i in terms of the corresponding
P1 bases

ℓi{Li0(µ(x̂)) ·∇Li1 |µ(x̂)−Li1(µ(x̂)) ·∇Li0 |µ(x̂)} = αiAℓ̂i{L̂i0(x̂) · ∇̂L̂i1 |x̂− L̂i1(x̂) · ∇̂L̂i0 |x̂}
(13)

By replacing the global P1 bases by the their transformations

Li(µ(x̂)) = L̂i(x̂) (14)

∇Li|µ(x̂) = Ĵ−T
µ (x̂)∇̂L̂i|x̂ (15)

we obtain

ℓiĴ−T
µ (x̂){L̂i0(x̂) · ∇̂L̂i1 |x̂ − L̂i1(x̂) · ∇̂L̂i0 |x̂}

= αiAℓ̂i{L̂i0(x̂) · ∇̂L̂i1 |x̂ − L̂i1(x̂) · ∇̂L̂i0 |x̂} (16)

The expression inside the curly braces on both sides is the same. We identify

A = Ĵ−T
µ (x̂) (17)

αi = ℓi/ℓ̂i (18)

The full transformation then looks like this:

N i(µ(x̂)) =
ℓi

ℓ̂i
Ĵ−T
µ (x̂) · N̂ i(x̂) (19)

Note that this transformation only works for the base functions, not for superpositions of
them. Each base function N i has a different transformation because the base multiplier
αi depends on the number of the base function.

4.1.4 Conclusions

From the examples above we can conclude that the following information is needed from
a Geometry class. It is quite possible that the list below is incomplete since the examples
above may have missed some piece of information that may be needed in general.

• The inverse transposed of the Jacobian Ĵ−T
µ (x̂).

• The Jacobian itself Ĵµ(x̂).

• The determinant of the Jacobian |Ĵµ(x̂)|.

• The lengths of the edges of the grid element ℓi.

• The lengths of the edges of the reference element ℓ̂i.

When local coordinates x̂ are provided the local-to-global map µ(x̂) and its inverse µ−1(x)
as well as the corner coordinates xi themselves are never needed. This makes the required
information independent of a shift in the global coordinates and opens an optimisation
possibility for regular grids.

14

4.2 Vertex Ordering

The vertex ordering information is based completely on the global numbering of the
vertices of a grid element. To obtain it, we collect the global IDs of the vertices in a
vector indexed by the indices of the vertices within the reference element:

void collectVertexIds(const Element& e, const GlobalIdSet& idSet ,

std::vector <GlobaIdSet ::IdType >& ids) {

ids.resize(e.geometry (). corners ());

for(int i = 0; i < ids.size (); ++ids)

ids[i] = idSet.subId(e, i, Element :: dimension);

}

In the next step the ordering reduction operation is applied: the smallest id in the array
is replaced by the number 0, the second-smallest is replaced by the number 1 etc.

template <class InIterator , class OutIterator >

void reduceOrder(const InIterator& inBegin , const InIterator& inEnd ,

OutIterator outIt)

{

static const std::less <

typename std:: iterator_traits <InIterator >:: value_type

> less;

for(InIterator inIt = inBegin; inIt != inEnd; ++inIt , ++ outIt)

*outIt = std::count(inBegin , inEnd , std:: bind2nd(less , *inIt));

}

To obtain an actual vector of reduced indices one can use the following code:

std::vector <typename GlobalIdSet ::IdType > ids;

collectVertexIds(elem , globalIdSet , ids);

std::vector <std::size_t > reduced_indices (ids.size ());

reduceOrder(ids.begin(), ids.end(), reduced_indices .begin ());

As an example, lets assume we have a quadrilateral or a tetrahedron with the global
ids of the vertices being 14 for vertex 0, 27 for vertex 1, 3 for vertex 2 and 800 for vertex
3. After ordering reduction the reduced vector will contain 1, 2, 0 and 3 in that order.

When determining the vertex ordering for a sub-entity, the reduced indices corre-
sponding to the vertices sub-entity are extracted into a smaller vector and the reduction
is applied again, at least conceptually. In reality, the reduction is mostly only necessary
because the type of the global ids may be a complicated non-integral struct, and we want
to keep the vertex ordering information as lean as possible. The actual information is
always contained in the relative ordering of the indices/ids, and the reduction preserves
that.

The ordering information can always be obtained from the global ids of the vertices.
However, for some grids, such as ALUGrid, using the global ids is quiet expensive. On the
other hand, ALUGrid already stores a twist of the faces, which can be easily extracted
and contains the same information as the vertex ordering, just encoded in a different
way. Though this does not provide vertex ordering information for the whole element,
this information is seldom needed.

To accommodate all sides, we define an interface class VertexOrderingInterface.
Implementations of this interface can be used to provide vertex ordering information.
Grids that store the vertex ordering internally for certain sub-entities can provide an

15

optimised implementation. These implementations may omit vertex ordering informa-
tion for sub-entities where such information is not readily available; they should throw
NotImplemented if such information is requested anyway.

Note that the information is still required to be consistent for those sub-entities where
information is available: Consider a tetrahedron and pick two triangular faces A and B
with a common edge. If someone requests vertex ordering information for one of the
faces and reduces that information to the edge, the result must be the same no matter
whether face A or B was used or whether the ordering was requested directly for the
edge itself.

The interface for the class is as follows:

struct VertexOrderingInterface {

// d imens ion o f t h e e n t i t y t h i s a p p l i e s t o
static const std:: size_t dimension;

// geometry t y p e o f t h e e n t i t y t h i s a p p l i e s t o
const GeometryType type() const;

// i t e r a t e ove r some sub−e n t i t y ’ s v e r t e x i n d i c e s
// must be a RandomAccess i t e r a t o r , v a l u e t y p e may be c on s t an t
class iterator;

// g e t b e g i n i t e r a t o r f o r t h e v e r t e x i n d i c e s o f some sub−e n t i t y
iterator begin(std:: size_t codim , std:: size_t subEntity) const;

// g e t end i t e r a t o r f o r t h e v e r t e x i n d i c e s o f some sub−e n t i t y
iterator begin(std:: size_t codim , std:: size_t subEntity) const;

// g e t r educed v e r t e x o r d e r i n g f o r t h e s p e c i f i e d sub−e n t i t y
void getReduced(std:: size_t codim , std:: size_t subEntity ,

std::vector <std::size_t >& order) const;

};

Information about the dimension and the geometry type is included because it determines
the limits for the parameters (via the ReferenceElements). The getReduced() method
shall resize the vector passed in the order parameter to the suitable size.

4.3 Matching Multiple Dofs on a Common Sub-Entity

Some finite elements have more than one dof on a given sub-entity of an element, and
assign a position inside the sub-entity to that dof (i.e. Pk k ≥ 4, Qk k ≥ 3). For
conforming schemes the ordering of the dofs on a sub-entity shared by two or more
elements must match such that the dofs on the same position can be identified.

A similar situation arises with edge elements of order 1.5: For simplices they have
three base functions on a face but only two of them are independent. A finite element
implementation must make sure to pick the same two base functions for the face in
neighbouring elements so their dofs can be identified.

Both issues can be addressed using the information provided by the ordering of the
global ids of the vertices.

4.4 Flipping of Base Function Values

Some finite element families, most notably Raviart-Thomas and edge elements, assign an
orientation to (some of) their dofs. That is, the value of the dof ai is interpolated from a

16

function u as the functions value at the dofs position xi projected onto some unit vector
ei:

ai = u(xi) · ei (20)

The direction of that unit vector is the orientation of the dof. For Raviart-Thomas ei is
the unit vector normal to the face (codimension 1 sub-entity), for edge elements ei is the
unit vector tangential to the edge (dimension 1 sub-entity) on which the dof is located.

To be continuous over element borders, elements connected to a common sub-entity
must agree upon a common global orientation for that sub-entity. If their local orientation
differs from the global orientation, the Basismust multiply the value of the corresponding
basis function by −1. The tricky part is the to determine the global orientation for the
common sub-entity correctly.

4.4.1 Tangential Orientation for Lines

Lines have two vertices which can be used to choose the orientation of the line: the
orientation vector points from the vertex with the lower index/id to the vertex with the
higher index/id. That is the geometric interpretation, we actually don’t want to compare
coordinates, but preferably just integers.

To obtain the local orientation, of an edge in an element, collect the indices of the
edges vertices, and here we mean indices inside the reference element of the element:

unsigned local_orientation [2];

local_orientation [0] = refelem.subEntity(edge_index , dim -1, 0, dim);

local_orientation [1] = refelem.subEntity(edge_index , dim -1, 1, dim);

For the global orientation we do basically the same. However, this time we use the
vertex ordering information derived from the global ids of the vertices of the element
instead of vertex indices inside the reference element:

unsigned global_orientation [2];

global_orientation [0] = vertex_order[local_orientation [0]];

global_orientation [1] = vertex_order[local_orientation [1]];

The ordering of the index values determines the local and global orientation:

if((local_orientation [0] < local_orientation [1])

== (global_orientation [0] < global_orientation [1]))

{

// l o c a l and g l o b a l o r i e n t a t i o n are i d e n t i c a l ; n o t h i n g t o do
} else {

// l o c a l and g l o b a l o r i e n t a t i o n d i f f e r ; f l i p ba s e f u n c t i o n v a l u e
}

4.4.2 Normal Orientation for Codimension 1 Sub-Entities

Normal orientation for sub-entities of codimension 1 is important for Raviart-Thomas
elements. Normal orientation is more tricky and cannot be done using the ordering
of the indices/id of the corners alone. Some additional information is needed, such as
the sign of the determinant of the Jacobian of the geometry map sgn(det(Ĵµ)). This is
however not enough for lower dimensional grids in a higher dimensional world, since then
the Jacobian is no longer quadratic and has no determinant.

The reason why the information about the vertex ids is not enough is roughly that to
construct the normal orientation there is alway some kind of rotation involved. In 2D the

17

codimension 1 sub-entities are edges. We can obtain a normal orientation by rotating the
tangential orientation by 90◦. To get a consistent result however, this rotation must be
done in the global coordinate system for the global orientation and in the respective local
coordinate systems for the local orientations. Locally on the element we have only the
local coordinate system available, however. If the geometric transformation µ involves
mirroring, then the sense of the rotation will be different for the local and the global
coordinate system. The sign of the Jacobian’s determinant can tell us whether there is
mirroring involved or not.

In 3D the construction of the orientation differs: for triangles we walk through the
indices/ids in ascending order and determine the direction of the normal vector by the
right-hand rule:

0 1

2

0 2

1

Similar for quadrilaterals, although if their indices/ids are acyclic we just have to pick and
orientation (here we chose to ignore the highest index/id and determine the orientation
from the remaining indices/ids as for triangles):

0 1

32

0 2

31

0 1

23

0 3

21

This is all rather tedious and in fact there is a much simpler way, which will even
work in the case of lower-dimensional grids in a higher-dimensional world. Sub-entities of
codimension 1 are always situated between two Elements. Choosing a normal orientation
for the sub-entity means to choose a vector that points from one element into the other.
The global orientation can thus be chosen by comparing the ids of the elements: it points
outward in the element with the lower id and inward in the element with the higher id.

The face orientation should be passed as a bool vector:

typedef std::vector <bool > FaceOrientation ;

The vector is indexed by the index of the face in the reference element. A value of true
means the global orientation of the face is outward, false means it is inward.

4.5 API

The API for global-valued finite elements consists of five interface classes (BasisInter-
face, InterpolationInterface, CoefficientsInterface, FiniteElementInterface,
and FiniteElementFactoryInterface) and two traits classes (BasisTraits and Finite-
ElementTraits). In contrast to the local interface which prefixes all its names with
“Local” we do not use any prefix here. “Local” is already taken, “Global” would sug-
gest that this interface is completely in global coordinates, “GlobalValue” is too clumsy
and adds too much to the lengths of names.

4.5.1 Finite Element Interface

struct FiniteElementInterface

{

// t y p e s o f component o b j e c t s
struct Traits

18

{

typedef implementation-defined Basis;

typedef implementation-defined Coefficients;

typedef implementation-defined Interpolation;

};

// c o n s t r u c t o r arguments are imp l emen ta t i on s p e c i f i c
FiniteElementInterface (...);

// . . . e x c e p t f o r t h e copy c o n s t r u c t o r
FiniteElementInterface(const FiniteElementInterface &);

// e x t r a c t component o b j e c t s
const typename Traits :: Basis& basis () const;

const typename Traits :: Coefficients& coefficients () const;

const typename Traits :: Interpolation& interpolation () const;

GeometryType type() const;

};

The member class Traits may be a member typedef instead. Constructor signatures
and existence is implementation-defined, except for the copy constructor, which must be
present and publicly accessible. Construction is generally done by a factory class. To
keep copy-construction efficient it is recommended that instances of this class are light
proxy objects.

The reason to mandate copy-construction is as follows: Up to now with local finite
elements dune-pdelab used the class FiniteElementMap as a kind of finite element
factory. If the finite element was required in different variants for a given grid (i.e. because
normal continuity was required for Raviar-Thomas elements), the FiniteElementMap

would store all the variants internally and return a reference to the correct variant upon
request. Since global-valued finite elements depend on the geometry of the grid element,
this trick is no longer useful, especially if you plan to modify the finite element object
by “binding” it to the geometry. The problem is that more than one finite element
for different grid elements may be required at the same time (think iterating over the
intersections). If the FiniteElementMap returns the same variant for both grid elements
the user code will first bind the finite element to the inside element and later to the
outside element, since both of his finite element references point to the same object.
Thus when he tries to access the inside finite element, he will in reality access the outside
element.
4.5.2 Finite Element Factory Interface

struct FiniteElementFactoryInterface

{

// may a l s o be an i n l i n e c l a s s
typedef implementation-defined FiniteElement;

// c o n s t r u c t i o n i s imp l ementa t i on−d e f i n e d
FiniteElementFactoryInterface (...);

// f i n i t e e l emen t o b j e c t c r e a t i o n
// arguments are imp l emen ta t i on d e f i n e d
const FiniteElement make (...);

};

19

The method to create a finite element object is make(). The created object is returned
by value (const FiniteElement). The factory implementation may choose to return
by reference instead (const FiniteElement&). Because temporaries may be bound to
const references in C++, this way code using the factory can always bind the returned
value to a const reference and avoid copy construction if that is not necessary:

const Factory :: FiniteElement& fe = factory.make ();

In any case, the returned value or reference must be valid for as long as the factory object
exists.

Since each finite element family will need different information to create a finite
element object tailored to a particular grid element, the actual argument of the male() are
implementation-defined. Earlier in this section we have seen different types of information
which may be needed to create a tailored finite element: geometry, vertex ordering and
face orientation. If they are needed for a given finite element implementation, that finite
element should require necessary items in the order given above and in the encoding
given earlier. If neither geometry nor vertex ordering is required, but the geometry type
is, that should be given in place of geometry and vertex ordering directly. Any extra
information should be given after these arguments. The possible signatures for make
thus are:

make(const Geometry&, const VertexOrder&, const FaceOrientation &, ...);

make(const Geometry&, const VertexOrder&, ...);

make(const Geometry&, const FaceOrientation &, ...);

make(const Geometry&, ...);

make(const VertexOrder&, const FaceOrientation &, ...);

make(const VertexOrder&, ...);

make(const GeometryType&, const FaceOrientation &, ...);

make(const GeometryType&, ...);

make(const FaceOrientation &, ...);

make (...);

Implementation must document what kind of arguments are required for make().
The constructor signature is implementation-defined.
It is recommended that the factory caches as much information as possible. For

instance, for regular hypercube grids the Jacobian of the geometry does not change and
is the only thing needed to transform the derivatives. For this case the constructor should
take a sample geometry and precompute the transformation. Whether the regular and
the general case are distinguished by different constructor arguments to the same factory
class, or whether there is one factory class for the regular and one for the general case is
left to the implementor of the factory.
4.5.3 Basis Interface

struct BasisInterface

{

struct Traits

{

// domain p r o p e r t i e s (l o c a l and g l o b a l)
typedef implementation-defined DomainField;

static const std:: size_t dimDomainLocal = implementation-defined;

static const std:: size_t dimDomainGlobal = implementation-defined;

typedef implementation-defined DomainLocal;

typedef implementation-defined DomainGlobal;

20

// range p r o p e r t i e s (g l o b a l range on l y)
typedef implementation-defined RangeField;

static const std:: size_t dimRange = implementation-defined;

typedef implementation-defined Range;

// j a c o b i a n p r o p e r t i e s (dimRange x dimDomainGlobal Matr ix w i t h
// components o f t y p e RangeFie ld)
typedef implementation-defined Jacobian;

// maximum number o f p a r t i a l d e r i v a t i v e s s u ppo r t e d
static const std:: size_t diffOrder = implementation-defined;

};

// Number o f shape f u n c t i o n s
std:: size_t size () const;

// Po lynomia l o rde r o f t h e shape f u n c t i o n s f o r quad ra t u r e
std:: size_t order () const;

// Eva l ua t e a l l shape f u n c t i o n s a t g i v e n p o s i t i o n
void evaluateFunction

(const typename Traits :: DomainLocal& in,

std::vector <typename Traits ::Range >& out) const;

// Eva l ua t e j a c o b i a n o f a l l shape f u n c t i o n s a t g i v e n p o s i t i o n
// r e q u i r e d f o r T r a i t s : : d i f f O r d e r >= 1
void evaluateJacobian

(const typename Traits :: DomainLocal& in,

std::vector <typename Traits ::Jacobian >& out) const;

// Eva l ua t e d e r i v a t i v e s o f a l l shape f u n c t i o n s a t g i v e n p o s i t i o n
// r e q u i r e d f o r T r a i t s : : d i f f O r d e r >= 2
void evaluate

(const array <std::size_t ,Traits :: dimGlobalDomain >& directions ,

const typename Traits :: DomainLocal& in,

std::vector <typename Traits ::Range >& out) const;

};

The basis interface closely follows the local basis interface with some notable exceptions.
First there are the types in the traits class. Since coordinates are still given in the

reference elements coordinate system but derivatives are done with respect to global
coordinates, a distinction must be made between local and global domain. The other
change is that the member types of the traits class no longer have a suffix “Type” since
it is quite clear from the camel-case naming convention that they are types.

Second the method for general derivatives evaluate() is no longer a template method
and its argument directions has different semantics. In the local basis interface,
directions was a list of directions in which to take derivatives, i.e. directions={0,
1, 0, 2} for the derivative ∂0∂1∂0∂2. This is inconvenient since it requires directions
to be a list of variable length, making the length a template parameter, and because the
order implied in the above derivative does not really exist, it can just as well be written
as ∂2

0∂1∂2. So in the global-value interface directions lists the exponents in the last

21

expression: direction={2, 1, 1}. This way the length of directions will always be
Traits::dimDomainGlobal and evaluate() no longer needs to be a template.
4.5.4 Interpolation Interface

struct InterpolationInterface

{

// Expor t b a s i s t r a i t s
typedef BasisInterface :: Traits Traits;

// de t e rmine c o e f f i c i e n t s i n t e r p o l a t i n g a g i v en f u n c t i o n
template <typename F, typename C>

void interpolate (const F& f, std::vector <C>& out) const;

};

The interface for global-value interpolation objects also has little modifications compared
to local interpolation objects. Main addition is the member type Traits which is the
same as in the corresponding basis class. This is to document the parameter types that
interpolate() will use to evaluate the function f.

For the member method evaluate() the requirements for the function object f

change slightly: it is still required to support the expression f.evaluate(x, y), and
x in that expression is still a local coordinate (though the type is named a little bit
different: const Traits::DomainLocal&. The difference is that the returned value y is
now in global coordinates and of the type Traits::Range.

4.6 Coefficients Interface

struct CoefficientsInterface

{

// number o f c o e f f i c i e n t s
std:: size_t size() const;

// g e t i ’ t h i nde x
const LocalKey& localKey(std:: size_t i) const;

};

The interface for the coefficients class is exactly the same as for the local coefficients. If
the global-valued finite elements is implemented in term of a local finite element it will
often be possible to simply reuse the coefficients class of the local finite element.

If there is some dof-matching required for common sub-entities of neighbouring ele-
ments however, and this dof-matching can be done entirely by reordering the dofs on the
sub-entity, then the coefficients class is the place to do it.

5 Appendix: List of Available Elements

22

	Introduction
	Static vs. Dynamic Interfaces
	Dependencies on other Modules

	The !LocalFiniteElement! Interface
	The !LocalBasis! Classes
	The !LocalCoefficients! Classes
	The !LocalInterpolation! Classes

	The Dynamic Interface
	The Virtual Interface
	The Virtual Wrappers

	Global-valued Finite Elements
	Geometry
	Gradient Transformation
	Raviart-Thomas Elements – Piola Transformation
	Edge Elements
	Conclusions

	Vertex Ordering
	Matching Multiple Dofs on a Common Sub-Entity
	Flipping of Base Function Values
	Tangential Orientation for Lines
	Normal Orientation for Codimension 1 Sub-Entities

	API
	Finite Element Interface
	Finite Element Factory Interface
	Basis Interface
	Interpolation Interface

	Coefficients Interface

	Appendix: List of Available Elements

