
The DUNE Buildsystem HOWTO

Christian Engwer∗

August 2, 2007
∗Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg,

Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

http://www.dune-project.org/

Contents

1 Structure of DUNE 2

2 Toolchain 3

2.1 Autotools . 3
2.2 Makefile.am . 4

2.2.1 Overview . 4
2.2.2 Building Documentation . 6

2.3 configure.ac . 7
2.4 autogen.sh . 9
2.5 dunecontrol . 9

3 Creating a new Dune module 11

4 Creating a new Dune application 12

5 Futher documentation 14

1

http://www.dune-project.org/

1 Structure of DUNE

1 Structure of DUNE

DUNE consists of several independent modules:

• dune-common

• dune-grid

• dune-istl

• dune-disc

• dune-fem

These modules interact very tightly and depend on each other.
The build system is structured as follows:

• Modules are build using the GNU autotools.

• Each module has a set of modules it depends on, these modules have to be built before building
the module itself.

• Each module has a file dune.module which hold dependecies and other information regarding
the module.

• The modules can be built in the appropriate order using the dunecontrol script (shipped with
dune-common)

The reasons to use the GNU autotools for DUNE were the following

• We need platform independent build.

• Enabling or disabling of certain features depending on features present on the system.

• Creations of libraries on all platforms.

• Easy creation of portable but flexible Makefiles.

The reasons to add the dunecontrol script and the dune.module description files were

• One tool to setup all modules (autotools can only work on one module).

• Automatic dependency tracking.

• Automatic collection of commandline parameters (configure needs special commandline param-
eters for all modules it uses)

2

2 Toolchain

2 Toolchain

2.1 Autotools

Software is generally developed to be used on multiple platforms. Since each of these platforms have
different compilers, different include files, there is a need to write Makefiles and build scripts so that
they can work on a variety of platforms. The free software community (Project GNU), faced with
this problem, devised a set of tools to generate Makefiles and build scripts that work on a variety of
platforms. If you have downloaded and built any GNU software from source, you are familiar with the
configure script. The configure script runs a series of tests to determine information about your
machine.

The autotools simplify the generation of portable Makefiles and configure scripts.

autoconf

autoconf is used to create the configure script. configure is created from configure.ac, using a
set of m4 files.

configure.ac m4/*.m4

autoconf

configure

How to write a configure.ac for DUNE is described in 2.3

automake

automake is used to create the Makefile.in files (needed for configure) from Makefile.am files and,
using a set of include files located in the am directory. These include files provide additional features,
not provided by the standard automake (see 2.2.2). The am directory is in the dune-common module
and each module intending to use one of these includes has to create symlink; this is usually done by
autogen.sh (see 2.4).

Makefile.am am/*

automake

Makefile.in

configure

Makefile

Information on writing a Makefile.am is described in 2.2

libtool

libtool is a wrapper around the compiler and linker. It offers a generic interface for creating static
and shared libraries, regardless of the platform it is running on.

3

2 Toolchain

libtool hides all the platform specific aspects of library creation and library usage. When linking
a library or an executable you (or automake) can call the compiler via libtool. libtool will then
take care of

• platform specific commandline parameters for the linker

• library dependencies

configure

configure will run the set of tests specified in your configure.ac. Using the results of these tests
configure can check that all necessary features (libs, programs, etc.) are present and can activate and
deactivate certain features of the module depending on the feature of the system.

For example configure in dune-grid will search for the ALUGrid library and depending on the
result enable or disable Dune::ALU3dGrid.

Many test will also store their results in the config.h header file. A headerfile can then use an
#ifdef statement to disable parts of the code that don’t work without a certain feature. This can be
used in the applications aswell as in the headers in a DUNE module. When we stick to the example of
the ALUGrid library config.h will contain a #define HAVE_ALUGRID if ALUGrid was found.

The config.h file is created by configure from a config.h.in file, which is automatically created
from the list of tests used in the configure.ac.

2.2 Makefile.am

2.2.1 Overview

Let’s start off with a simple program hello built from hello.c. As automake is designed to build and
install a package it needs to know

• what programs it should build

• where to put them when installing

• which sources to use

The Makefile.am thus looks like this:

noinst_PROGRAMS = hello

hello_SOURCES = hello.c

This would build hello and won’t install it when make install is called. Using bin_PROGRAMS

instead of noinst_PROGRAMS would install the hello-binary into a prefix /bin directory which we
don’t want to do with most of the DUNE applications.

Building more programs with a couple of source-files works like this

noinst_PROGRAMS = hello bye

hello_SOURCES = common.c common.h hello.c

bye_SOURCES = common.c common.h bye.c parser.y lexer.l

automake has more integrated rules than the standard make, the example above would automatically
use yacc/lex to create parser.c/lexer.c and build them into the bye binary.

Make-Variables may be defined and used as usual:

4

2 Toolchain

noinst_PROGRAMS = hello bye

COMMON = common.c common.h

hello_SOURCES = $(COMMON) hello.c

bye_SOURCES = $(COMMON) bye.c parser.y lexer.l

Even normal make-rules may be used in a Makefile.am.

Using flags

Compiler/linker/preprocessor-flags can be set either globally:

noinst_PROGRAMS = hello bye

AM_CPPFLAGS = -DDEBUG

hello_SOURCES = hello.c

bye_SOURCES = bye.c

or locally:

noinst_PROGRAMS = hello bye

hello_SOURCES = hello.c

hello_CPPFLAGS = -DHELLO

bye_SOURCES = bye.c

bye_CPPFLAGS = -DBYE

The local setting overrides the global one, thus

hello_CPPFLAGS = $(AM_CPPFLAGS) -Dmyflags

may be a good idea.
It is even possible to compile the same sources with different flags:

noinst_PROGRAMS = hello bye

hello_SOURCES = generic -greeting.c

hello_CPPFLAGS = -DHELLO

bye_SOURCES = generic -greeting.c

bye_CPPFLAGS = -DBYE

Perhaps you’re wondering why the above examples used AM CPPFLAGS instead of the normal CPPFLAGS?
The reason for this is that the variables CFLAGS, CPPFLAGS, CXXFLAGS etc. are considered user variables

which may be set on the commandline:

make CXXFLAGS="-O2000"

This would override any settings in Makefile.am which might be necessary to build. Thus, if the
variables should be set even if the user wishes to modify the values, you should use the AM * version.

The real compile-command always uses both AM VAR and VAR . Options that autoconf finds are stored
in the user variables (so that they may be overridden)

Commonly used variables are:

• AM CPPFLAGS: flags for the C-Preprocessor. This includes preprocessor defines like -DNDEBUG and
include pathes like -I/usr/local/package/include

• AM CFLAGS, AM CXXFLAGS: flags for the compiler (-g, -O, ...). One difference between these and
the CPPFLAGS is that the linker will get CFLAGS/CXXFLAGS and LDFLAGS but not CPPFLAGS

5

2 Toolchain

• AM LDFLAGS options for the linker

• LDADD: libraries to link to a binary

• LIBADD: libraries to add to a library

• SOURCES: list of source-files (may include headers as well)

Conditional builds

Some parts of DUNE only make sense if certain addon-packages were found. autoconf therefore defines
conditionals which automake can use:

if OPENGL

PROGS = hello glhello

else

PROGS = hello

endif

hello_SOURCES = hello.c

glhello_SOURCES = glhello.c hello.c

This will only build the glhello program if OpenGL was found. An important feature of these
conditionals is that they work with any make program, even those without a native if construct like
GNU-make.

Default targets

An automake-generated Makefile does not only know the usual all, clean and install targets but also

• tags travel recursively through the directories and create TAGS-files which can be used in many
editors to quickly find where symbols/functions are defined (use emacs-format)

• ctags the same as ”tags” but uses the vi-format for the tags-files

• dist create a distribution tarball

• distcheck create a tarball and do a test-build if it really works

2.2.2 Building Documentation

If you want to build documentation you might need additional make rules. DUNE offers a set of
predefined rules to create certain kinds of documentation. Therefor you have to include the appropriate
rules from the am/ directory. These rules are stored in the dune-common/am/ directory. If you want
to use these any of these rules in your DUNE module or application you will have to create a symbolic
link to dune-common/am/. The creation of this link should be done by the autogen.sh script.

html pages

Webpages are created from wml sources, using the program wml (http://thewml.org/).
$(top srcdir)/am/webstuff containes the necessary rules.

6

http://thewml.org/

2 Toolchain

Listing 1 (File Makefile.am)

$Id : Make f i l e .am 4961 2007−07−30 20:03 :01Z mbla t t $

al so bu i l d the se sub d i r e c t o r i e s
SUBDIRS = devel doxygen layout buildsystem

only b u i l d html pages , i f documentation i s enab led
if BUILD_DOCS

PAGES = view -concept.html installation -notes.html contrib -software.html

endif

automat i ca l l y c rea t e the se web pages
all: $(PAGES)

s e t t i n g l i k e in dune−web
CURDIR=doc

pos i t i on o f the web base d i r ec tory ,
r e l a t i v e to $ (CURDIR)
BASEDIR =..

EXTRAINSTALL=example.opts

i n s t a l l the html pages
docdir=$(datadir)/doc/dune -common

doc_DATA = $(PAGES) example.opts

EXTRA_DIST = $(PAGES) example.opts

inc lude r u l e s f o r wml −> html trans format ion
include $(top_srcdir)/am/webstuff

remove html pages on ‘ ‘make clean ’ ’
SVNCLEANFILES = $(PAGES)

clean -local:

if test -e $(top_srcdir)/doc/doxygen/Doxydep; then rm -rf $(SVNCLEANFILES); fi

inc lude f u r t h e r r u l e s needed by Dune
include $(top_srcdir)/am/global -rules

LATEXdocuments

In order to compile LATEXdocuments you can include $(top srcdir)/am/latex. This way you get
rules for creation of DVI files, PS files and PDF files.

SVG graphics

SVG graphics can be converted to png, in order to include them into the web page. This conversion
can be done using inkscape (http://www.inkscape.org/). $(top srcdir)/am/inkscape.am offers
the necessary rules.

2.3 configure.ac

configure.ac is a normal text file that contains several autoconf macros. These macros are evaluated
my the m4 macro processor and transformed into a shell script.

Listing 2 (File dune-common/configure.ac)

#! / bin /bash
$Id : con f i gure . ac 4951 2007−06−27 19:31 :55Z c h r i s t i $

Process t h i s f i l e wi th autoconf to produce a con f i gure s c r i p t .
AC_INIT(dune -common , 1.0beta5 , dune@dune -project.org)

AM_INIT_AUTOMAKE

7

http://www.inkscape.org/

2 Toolchain

AC_CONFIG_SRCDIR ([common/stdstreams.cc])

AM_CONFIG_HEADER ([config.h])

check a l l dune−module s t u f f
DUNE_CHECK_ALL_M

pre s e t v a r i a b l e to path such tha t #inc lude <dune /. . . > works
AC_SUBST ([DUNE_COMMON_ROOT], ’$(top_srcdir)’)

AC_SUBST ([AM_CPPFLAGS], ’-I$(top_srcdir)’)

AC_SUBST ([LOCAL_LIBS], ’$(top_builddir)/ common/libcommon.la ’)

DUNE_SUMMARY_ALL

echo

echo Note: Most of the libraries checked for above are only used for the self -test

echo of Dune. The library itself will build and the headers will work even if

echo ALBERTA , MPI , etc. cannot be found. An exception to this are UG and AmiraMesh

echo which need to be found right now if you want to use them later.

echo

wri t e output
AC_CONFIG_FILES ([Makefile

lib/Makefile

bin/Makefile

common/Makefile

common/test/Makefile

doc/Makefile

doc/devel/Makefile

doc/layout/Makefile

doc/doxygen/Makefile

doc/buildsystem/Makefile

m4/Makefile

am/Makefile

bin/wmlwrap

bin/check -log -store

dune -common.pc])

AC_OUTPUT

chmod +x bin/wmlwrap

chmod +x bin/check -log -store

We offer a set of macros that can be used in your configure.ac:

• DUNE CHECK ALL M runs all checks usually needed by a DUNE module. This macros takes list of
other DUNE modules it should search for as parameters.

DUNE_CHECK_ALL_M ([dunecommon], [dunegrid])

will search for dune-common and dune-grid (Attention: you have to provide the modules in such
an order that the dependencies are checked already).

• DUNE CHECK ALL same as DUNE CHECK ALL M, except that it only runs the tests needed for a DUNE

application

• DUNE SUMMARY ALL prints information on the results of all major checks run by DUNE CHECK ALL

or DUNE CHECK ALL M.

DUNE CHECK ALL and DUNE CHECK ALL M define certain variables that can be used in the configure

script or in the Makefile.am:

8

2 Toolchain

• DUNE MODULE CPPFLAGS

• DUNE MODULE LDFLAGS

• DUNE MODULE LIBS

• DUNE MODULE ROOT

The last step to a complete configure.ac is that you tell autoconf which files should be generated
by configure. Therefor you add an AC CONFIG FILES([WhiteSpaceSeparatedListOfFiles]) state-
ment to your configure.ac. The list of files should be the list of files that are to be generated, not
the input – i.e. you would write

AC_CONFIG_FILES ([Makefile doc/Makefile])

end not

AC_CONFIG_FILES ([Makefile.in doc/Makefile.in])

After you told autoconf which files to create you have to actually trigger their creation with command
AC OUTPUT

2.4 autogen.sh

The autogen.sh script is used to bring the freshly checked out module into that state that you expect
from a module received via the tarball. That means it runs all necessary stepts so that you can call
configure to setup your module. In the case of DUNE this means that autogen.sh runs

• libtoolize (prepare the module for libtool)

• aclocal (collect all autoconf macros needed for this module)

• autoheader (create the config.h.in)

• automake (create the Makefile.in)

• autoconf (create configure)

If needed it will also create the symbolic link to the dune-common/am/ directory (see 2.2.2).

2.5 dunecontrol

dunecontrol helps you building the different DUNE modules in the appropriate order. Each module
has a dune.module file which contains information on the module needed by dunecontrol.
dunecontrol searches for dune.module files recursively from where you are executing the program.

For each DUNE module found it will execute a dunecontrol command. All commands offered by
dunecontrol have a default implementation. This default implementation can be overwriten and
extended in the dune.module file.

The commands you are interested in right now are

• autogen runs autogen.sh for each module. A list of directories containing dune.module files
and the parameters given on the commandline are passed as paramters to autogen.sh.

9

2 Toolchain

• configure runs configure for each module. --with-dunemodule parameters are created for a
set of known DUNE modules.

• make runs make for each module.

• all runs autogen.sh, configure and make for each module.

In order to build DUNE the first time you will need the all command. In pseudo code all does the
following:

foreach ($module in $Modules) {

foreach (command in {autogen ,configure ,make) {

run $command in $module

}

}

This differs from calling

dunecontrol autogen

dunecontrol configure

dunecontrol make

as it ensures that i.e. dune-common is fully built before configure is executed in dune-grid. Otherwise
configure in dune-grid would complain that libcommon.la from dune-common is missing.

Further more you can add parameters to the commands; these parameters get passed on to the
program being executed. Assuming you want to call make clean in all DUNE modules you can execute

dunecontrol make clean

opts files

You can also let dunecontrol read the command parameters from a file. For each command you
can specify parameters. The parameters are stored in a varible called COMMAND FLAGS with COMMAND

written in capital letters.

Listing 3 (File examle.opts)

use the se op t ions f o r con f i gure i f no op t ions a prov ided on the cmdline
AUTOGEN_FLAGS ="--ac =2.50 --am=-1.8"

CONFIGURE_FLAGS ="CXX=g++-3.4 --prefix=’/tmp/Hu Hu ’"

MAKE_FLAGS=install

When you specify an opts file and command line paramters

dunecontrol --opts=some.opts configure --with -foo=bar

dunecontrol will ignore the parameters specified in the opts file and you will get a warning.

environment variables

You can further control the behavior of dunecontrol by certain environment variables.

• DUNE OPTS FILE specifies the opts file that should be read by dunecontrol. This variable will be
overwritten by the --opts= option.

• MAKE tells dunecontrol which command to invoke for ’make’. This can be useful for exmaple, if
you want to use gmake as a make dropin.

• GREP tells dunecontrol which command to invoke for ’grep’.

10

3 Creating a new Dune module

dune.module

The dune.module file is split into two parts. First we have the parameter section where you specify
parameters describing the module. Then we have the command section where you can overload the
default implementation of a command called via dunecontrol.

Listing 4 (File dune.module)

paramters f o r dune con t ro l
Module: dune_grid

Depends: dune_common

Suggests: UG Alberta Alu3d

over load the run con f i gure command
run_configure () {

l e t s extend the paramter l i s t $PARAMS
if test "x$HAVE_UG" == "xyes"; then

PARAMS="$PARAMS \"--with -ug=$PATH_UG\""

fi

if test "x$HAVE_Alberta" == "xyes"; then

PARAMS="$PARAMS \"--with -alberta=$PATH_Alberta \""

fi

if test "x$HAVE_Alu3d" == "xyes"; then

PARAMS="$PARAMS \"--with -alberta=$PATH_Alu3d\""

fi

c a l l the d e f a u l t implementation
run_default_configure

}

The parameter section will be parsed by dunecontrol will effect i.e. the order in which the modules
are built. The parameters and their values are seperated by colon. Possible parameters are

• Module (required) is the name of the module. The name is of the form [a-zA-Z0-9]+.

• Depends (required) takes a space seperated list of required modules. This module is not functional
without these other modules.

• Suggests (optional) takes a space seperated list of optional modules. This module is functional
without these other modules, but can offer further functionality if one or more of the suggested
modules are found.

The command section lets you overload the default implementation provided by dunecontrol. For
each command dunecontrol call the function run command . The parameters from the commandline
or the opts file are store in the variable $PARAMS. If you just want to create additional parame-
ters you can add these to $PARAMS and then call the default implementation of the command via
run default command .

3 Creating a new Dune module

DUNE modules are packages that offer a certain functionality that can be used by DUNE applications.
Therefor DUNE modules offer libraries and/or header files.

In order to create new DUNE module, you have to provide

• a dune.module file
Usually you will only need to specify the parameters Module and Depends.

11

4 Creating a new Dune application

• an autogen.sh script
For most of the modules it should be sufficient to copy the autogen.sh from dune-grid.

• a configure.ac file
Have look at the configure.ac in dune-grid for example. The most important part is the call
to DUNE CHECK ALL M which runs all checks needed for a DUNE module, plus the checks for the
dependencies.

A DUNE module should comply with the following rules:

• Documentation is located under doc/ and gets web-installed under BASEDIR/doc/.

• automake includes are located in dune-common. To use them, you will have to make a symbolic
link to dune-common/am/ (see 2.2.2). The symlink creation should be handled by the autogen.sh
(see 2.4).

• The am/ directory does not get included in the tarball.

• Header files that can be used by other DUNE modules should be accessible via #include <dune/foo/bar.hh>.
In order to work with a freshly checkout version of your module you will usually need to create a
local symbolic link dune -> module-direcotry/ . This link gets created by the DUNE CHECK ALL M

command of your configure.ac. When running make install all header files should be in-
stalled into prefix /include/dune/.

4 Creating a new Dune application

A DUNE application does not differ a lot from a DUNE module. The only difference is that it does not
offer functionality to other DUNE projects. This make somethings a little bit easier.

In order to create new DUNE module, you have to provide

• a dune.module file
Usually you will only need to specify the parameters Module and Depends.

• an autogen.sh script
For most of the application the autogen.sh following further below should be sufficient.

• a configure.ac file
The configure.ac looks more less the same as for a DUNE module except that you call DUNE CHECK ALL

instead of DUNE CHECK ALL M.

Listing 5 (Example autogen.sh for a DUNE application)
#!/ bin /sh

set -e

usage () {

echo "Usage: ./ autogen.sh [options]"

echo " --ac=, --acversion=VERSION use a specific VERSION of autoconf"

echo " --am=, --amversion=VERSION use a specific VERSION of automake"

echo " -h, --help you already found this :-)"

}

12

4 Creating a new Dune application

for OPT in "$@"; do

set +e

s to l e n from con f i gure . . .
when no opt ion i s se t , t h i s re turns an error code
arg=‘expr "x$OPT" : ’x[^=]*=\(.*\) ’ ‘

set -e

case "$OPT" in

--ac=*|-- acversion =*)

if test "x$arg" == "x"; then

usage;

exit 1;

fi

ACVERSION=$arg

;;

--am=*|-- amversion =*)

if test "x$arg" == "x"; then

usage;

exit 1;

fi

AMVERSION=$arg

;;

-h|--help) usage ; exit 0 ;;

*)

if test -d "$OPT/m4"; then

ACLOCAL_FLAGS ="$ACLOCAL_FLAGS -I $(cd $OPT/m4; pwd)"

fi

if test -d "$OPT/am"; then

am_dir="$OPT/am"

fi

;;

esac

done

if test x$1 = "x" ; then

usage

exit 0

fi

if test "x$ACLOCAL_FLAGS " = "x"; then

echo dune -common/m4 not found. Please supply directory!

usage

exit 1

fi

if test -d m4 ; then

ACLOCAL_FLAGS ="$ACLOCAL_FLAGS -I m4"

fi

if test "x$AMVERS" != x ; then

echo Warning: explicitly using automake version $AMVERS

b ina r i e s are c a l l e d automake−$AMVERS
AMVERS="-$AMVERS"

fi

aclocal$AMVERSION $ACLOCAL_FLAGS

libtoolize --automake --force

autoheader$ACVERSION

automake$AMVERSION --add -missing

13

5 Futher documentation

autoconf$ACVERSION

5 Futher documentation

automake & Makefile.am

http://www.gnu.org/software/automake/manual/

The automake manual describes in detail how to write and maintain a Makefile.am and the usage of
automake.

autoconf & configure.ac

http://www.gnu.org/software/autoconf/manual/

The autoconf manual covers the usage of autoconf and how to write configure.ac files (sometimes
they are called configure.in).

Autoconf Macro Archive

http://autoconf-archive.cryp.to/

The Autoconf Macro Archive provides macros that can be integrated in your configure.ac in order
to search for certain software. These macros are useful to many software writers using the autoconf
tool, but too specific to be included into autoconf itself.

libtool

http://www.gnu.org/software/libtool/manual.html

The libtool manual offers further information on the usage of libtool package and gives a good
overview of the different problems/aspects of creating portable libraries.

autobook

http://sources.redhat.com/autobook/

The autobook is a complete book describing the GNU toolchain (autoconf, automake and libtool).
It contains many recipies on how to use the autotools. The book is available as an online version.

14

http://www.gnu.org/software/automake/manual/
http://www.gnu.org/software/autoconf/manual/
http://autoconf-archive.cryp.to/
http://www.gnu.org/software/libtool/manual.html
http://sources.redhat.com/autobook/

	Structure of DUNE
	Toolchain
	Autotools
	Makefile.am
	Overview
	Building Documentation

	configure.ac
	autogen.sh
	dunecontrol

	Creating a new Dune module
	Creating a new Dune application
	Futher documentation

