The DUNE Buildsystem HOWTO

Christian Engwer*

March 1 2009

*Interdisziplindres Zentrum fiir Wissenschaftliches Rechnen, Universitdt Heidelberg,

Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

http://www.dune-project.org/

Contents

‘ 14
5.1.3 Automatic testing e 15

5.2 _configure a.d ... 16
5.3 Using configuration information provided by configurd 17

5.4 dune-autogen 18

6 Building Sets of Modules Using dunecontrol 19

[6.1 dune moduld . ..o 21
6.2 DUNE-specific conditional buildd . . . e e 22

M&mngs;mmgﬂmﬁmﬂ 23

[7__Further documentation 24

http://www.dune-project.org/

1 Getting started

1 Getting started

TODO: How do I build the grid howto?

2 Creating a new DUNE project

From a build system point of view there is no difference between a DUNE application and a DUNE module.

DUNE modules are packages that offer a certain functionality that can be used by DUNE applications.
Therefore DUNE modules offer libraries and/or header files. A DUNE module needs to comply with
certain rules (see [3)).

Creating a new DUNE project has been covered in detail in 2.1l using duneproject to take work off
of the user. This is also the recommended way to start a new project. If for whatever reasons you do
not wish to use duneproject here is the bare minimum you have to provide in order to create a new
project:

e a dune.module file
Usually you will only need to specify the parameters Module and Depends.

e Note: an dune-autogen script is not needed any more!

e a basic m4 file
You need to provide two macros MODULE CHECKS and MODULE CHECK_MODULE (see [5.5]).

e a configure.ac file
Have look at the configure.ac in dune-grid for example. The most important part is the
call to DUNE_CHECK_ALL which runs all checks needed for a DUNE module, plus the checks for the
dependencies.

2.1 Configuring new DUNE module using duneproject

This section tells you how to begin working with DUNE without explaining any further details. For a
closer look on duneproject, see section 2

Once you have downloaded all the DUNE modules you are interested in, you probably wonder “How
do I start working with DUNE?” It is quite easy. Let us assume you have a terminal open and are inside
a directory containing some DUNE modules. Let us say

1s -1

produces something like:

dune -common/
dune -grid/
config.opts

There is no difference between a DUNE module you have downloaded from the web and modules
you created yourself. dunecontrol takes care of configuring your project and creating the correct
Makefiles (so you can easily link and use all the other DUNE modules). It can be done by calling

./dune-common/bin/duneproject

2 Creating a new DUNE project

Note: In case you are using the unstable version DUNE you should be aware that the build system
may change, just like the source code. Therefore it might be that duneproject is not up to date with
the latest changes.

After calling duneproject, you have to provide a name for your project (without whitespace), e.g.,
dune-foo. The prefix dune- is considered good practice, but it is not mandatory. You are then
asked to provide a list of all modules the new project should depend on (this will be something like
dune-common dune-grid, etc.). At last, you should provide the version of your project (e.g., 0.1) and
your email address. duneproject now creates your new project which is a folder with the name of
your project, containing some files needed in order to work with DUNE. In our example,

1s -1 dune-foo/

should produce something like

configure.ac
dune .module
Makefile.am
README

src

--> dune-foo.cc
doc

You can now call dunecontrol for your new project, as you would for any other DUNE mod-
ule. If you have a config.opts file configured to your needs (see e.g. the “Installation Notes”
on http://www.dune-project.org), a simple call of

./dune-common/bin/dunecontrol --module=dune-foo --opts=config.opts all

should call dune-autogen, configure and make for your project and all modules your project depends
on first.

Remark 2.1 Always call dunecontrol from the directory containing dune-common.

You can now simply run

./dune-foo/src/dune-foo

which should produce something like

Hello World! This is dune-foo.
This is a sequential program.

If you want your DUNE module to be usable by other people your design should follow a certain
structure. A good way to indicate that your module is set up like the other DUNE modules is by
naming it with the prefix dune-. Since your module should be concerned with a certain topic, you
should give it a meaningful name (e.g. dune-grid is about grids). You will also see that there are
subfolders doc/, foo/ and src/ in dune-foo/. foo/ will contain any headers that are of interest
to other users (like the subfolder common/ in dune-common, grid/ in dune-grid, etc.). Other users
will have to include those files if they want to work with them. Let’s say your project provides some
interface implementation in a file foo.hh. duneproject already put this an example file into the
subfolder dune/foo/.

dune-foo/
-> configure.ac
-> doc/
-> doxygen/
-> Doxylocal

http://www.dune-project.org

3 Dune module guidelines

-> Makefile.am

-> Makefile.am
-> dune.module
-> dune/

-> foo/

-> foo.hh
-> Makefile.am

-> Makefile.am
-> Makefile.am
-> README
-> src/

-> dune_foo.cc

After running

make doc

in dune-foo you should now find a html doxygen documentation which can be read by opening
dune-foo/doc/doxygen/html/index.html.

3 Dune module guidelines

A DUNE module should comply with the following rules:

Documentation is located under doc/ and gets web-installed under BASEDIR/doc/.

automake includes are located in dune-common. To use them, you will have to make a sym-
bolic link to dune-common/am/ (see [(.1.2]). The symlink creation should be handled by the
dune-autogen (see [5.4).

The am/ directory does not get included in the tarball.

Additional configure tests are located in the m4/ directory. You should at least provide the macros
MODULE _CHECKS and MODULE _CHECK_MODULE, in order to setup and find your module (see [B.5]).

Header files should be accessible via #include <dune/foo/bar.hh>, otherwise they cannot be
used by other DUNE modules. When running make install all header files should be installed
into prefiz/include/dune/.

4 The Structure of DUNE

DUNE consists of several independent modules:

dune-common
dune-geometry
dune-grid
dune-istl

dune-grid-howto

5 Building Single Modules Using the GNU AutoTools

Single modules can depend on other modules and so the DUNE modules form a dependency graph.
The build system has to track and resolve these inter-module dependencies.
The build system is structured as follows:

e Each module is built using the GNU AutoTools.

e Each module has a set of modules it depends on, these modules have to be built before building
the module itself.

e Each module has a file dune.module which holds dependencies and other information regarding
the module.

e The modules can be built in the appropriate order using the dunecontrol script (shipped with
dune-common)

The reasons to use the GNU AutoTools for DUNE were the following
e We need platform independent build.
e Enabling or disabling of certain features depending on features present on the system.
e Creations of libraries on all platforms.
e Easy creation of portable but flexible Makefiles.
The reasons to add the dunecontrol script and the dune.module description files were
e One tool to setup all modules (the AutoTools can only work on one module).
e Automatic dependency tracking.
e Automatic collection of command-line parameters (configure needs special command-line pa-

rameters for all modules it uses)

5 Building Single Modules Using the GNU AutoTools

Software is generally developed to be used on multiple platforms. Since each of these platforms has
different compilers, different header files, there is a need to write makefiles and build scripts that work
on a variety of platforms. The Free Software Foundation (FSF), faced with this problem, devised a
set of tools to generate makefiles and build scripts that work on a variety of platforms. These are the
GNU AutoTools. If you have downloaded and built any GNU software from source, you are familiar
with the configure script. The configure script runs a series of tests to get information about your
machine.
The autotools simplify the generation of portable Makefiles and configure scripts.

autoconf

autoconf is used to create the configure script. configure is created from configure.ac, using a
set, of m4 files.

5 Building Single Modules Using the GNU AutoTools

configure.ac m4/*.mé

\ J

Tautoconf

configure

How to write a configure.ac for DUNE is described in Sec.[5.2l

automake

automake is used to create the Makefile.in files (needed for configure) from Makefile.am files, using
a set of include files located in a directory called am. These include files provide additional features
not provided by the standard automake (see Sec.[(.I.2)). The am directory is in the dune-common
module and each module intending to use one of these includes has to have a symlink am that points
to dune-common/am. This link is usually created by dune-autogen (see Sec.[5.4)).

Makefi\le .am am/*

J
Ta,ut omake

Makefile.in

1\ configure

Makefile

Information on writing a Makefile.am is described in [5.1]

libtool
libtool is a wrapper around the compiler and linker. It offers a generic interface for creating static
and shared libraries, regardless of the platform it is running on.

libtool hides all the platform specific aspects of library creation and library usage. When linking
a library or an executable you (or automake) can call the compiler via libtool. libtool will then
take care of

e platform specific command-line parameters for the linker,

e library dependencies.

configure

configure will run the set of tests specified in your configure.ac. Using the results of these tests
configure can check that all necessary features (libraries, programs, etc.) are present and can activate
and deactivate certain features of the module depending on what is available on your system.

For example configure in dune-grid will search for the ALUGrid library and enable or disable
Dune: :ALU3dGrid. This is done by writing a preprocessor macro #define HAVE_ALUGRID in the
config.h header file. A header file can then use an #ifdef statement to disable parts of the code that
do not work without a certain feature. This can be used in the applications as well as in the headers
of a DUNE module.

The config.h file is created by configure from a config.h.in file, which is automatically created
from the list of tests used in the configure.ac.

5 Building Single Modules Using the GNU AutoTools

5.1 Makefile.am
5.1.1 Overview

Let’s start off with a simple program hello built from hello.c. As automake is designed to build and
install a package it needs to know

e what programs it should build,
e where to put them when installing,

e which sources to use.

The core of a Makefile.am thus looks like this:

noinst_PROGRAMS = hello
hello_SOURCES = hello.c

This would build hello but not install it when make install is called. Using bin_PROGRAMS instead
of noinst_PROGRAMS would install the hello-binary into a prefiz/bin directory.
Building more programs with several source files works like this

noinst_PROGRAMS = hello bye

hello_SOURCES = common.c common.h hello.c
bye_SOURCES = common.c common.h bye.c parser.y lexer.l

automake has more integrated rules than the standard make, the example above would automatically
use yacc/lex to create parser.c/lexer.c and build them into the bye binary.
Make-Variables may be defined and used as usual:

noinst _PROGRAMS = hello bye
COMMON = common.c common.h

hello_SOURCES = $(COMMON) hello.c
bye_SOURCES = $(COMMON) bye.c parser.y lexer.l

Even normal make-rules may be used in a Makefile.am.

Using flags
Compiler/linker /preprocessor-flags can be set either globally:

noinst _PROGRAMS = hello bye
AM_CPPFLAGS = -DDEBUG

hello_SOURCES = hello.c
bye_SOURCES = bye.c

or locally:
noinst_PROGRAMS = hello bye

hello_SOURCES = hello.c
hello_CPPFLAGS = -DHELLO

bye_SOURCES = bye.c
bye_CPPFLAGS = -DBYE

The local setting overrides the global one, thus

5 Building Single Modules Using the GNU AutoTools

hello_CPPFLAGS = $(AM_CPPFLAGS) -Dmyflags

may be a good idea.
It is even possible to compile the same sources with different flags:

noinst _PROGRAMS = hello bye

hello_SOURCES = generic-greeting.c
hello_CPPFLAGS = -DHELLO

bye_SOURCES = generic-greeting.c
bye_CPPFLAGS = -DBYE

Perhaps you’re wondering why the above examples used AM_CPPFLAGS instead of normal CPPFLAGS?
The reason for this is that the variables CFLAGS, CPPFLAGS, CXXFLAGS etc. are considered user variables
which may be set on the command line:

make CXXFLAGS="-02000"

This would override any settings in Makefile.am which might be necessary to build. Thus, if the
variables should be set even if the user wishes to modify the values, you should use the AM_* version.

The real compile-command always uses both AM_VAR and VAR (or progname_VAR and VAR). Options
that autoconf finds are stored in the user variables (so that they may be overridden).

Besides the three types of variables mentioned so far (user-, automake- and program-variables) there
exists a fourth type by convention: variables of dependent libraries. These variables have the form
LIBRARY _VAR and contain flags necessary to build programs or libraries which depend on that library.
They are usually included in program_VAR, like this:

foo_CPPFLAGS = $(AM_CPPFLAGS) $(SUPERLU_CPPFLAGS)

If all programs build by the same makefile depend on a library, program _VAR can be included in AM_VAR
instead:

AM_CPPFLAGS = @AM_CPPFLAGS@ $(SUPERLU_CPPFLAGS)

There are five classes of variables in automake-generated makefiles:

automake Example: AM_CPPFLAGS. These variables are usually undefined by default and the developer
may assign them default values in the Makefile.am:

AM_CPPFLAGS = -DMY_DIR=‘pwd*

Automake variables are not automatically substituted by configure, though it is common for
the developer to ac_susst them. In this case a different technique must be used to assign values
to them, or the substituted value will be ignored. See the configure-substituted class below.
The names of automake variables begin with AM_ most of the time, but there are some variables
which don’t have that prefix. These variables give defaults for target-specific variables.

configure-substituted Example: srcdair. Anything can be made a configure-substituted variable by
calling ac_sussT in configure.ac. Some variables always substituted by autocon or automake,
others are only substituted when certain autoconf macros are used. In Dune, it is quiet common
to substitute automake variables:

AC_SUBST (AM_CPPFLAGS, $DUNE_CPPFLAGS)

Lautoconf manual, section “Preset Output Variables”

5 Building Single Modules Using the GNU AutoTools

The value substituted by configure can be augmented in the Makefile.am like this:

AM_CPPFLAGS = QAM_CPPFLAGS@ -DMY_DIR=‘pwd°‘

target-specific Example: target CPPFLAGS. The names of these variables are of the form canonical
target name followed by an underscore followed some uppercase letters. If there is a automake
variable corresponding to this target-specific variable, the uppercase letters at the end of the
name usually correspond to the name of that automake variable. These variables provide target-
specific information. They are defined by the developer in the Makefile.am and are documented
in the automake manual. If there is corresponding a automake variable it provides a default
which is used when the target-specific variable is not defined. Example definition:

false_SOURCES = true.c
false_CPPFLAGS = $(AM_CPPFLAGS) -DEXIT_CODE=1

This example also shows how to include the value of the corresponding automake variable.

user Example: CPPFLAGS. These variables are for the user to set on the make command line:

make CPPFLAGS=-DNDEBUG

They usually augment some target-specific or makefile-default variable in the build rules.
Often these variables are preciou%, and the user can tell configure what values these variables
should have. These variables are configure-substituted.

The developer should never set this variables in the Makefile.am, because that would override
the user-provided values given to configure. Instead, configure.ac must be tweaked to set a
different default if the user does not give a value to configure.

external-library Example: LTBCPPFLAGS. These variables contain settings needed when using external
libraries in a target. They should be included in the value for the corresponding target-specific
variable

testprog_CPPFLAGS = $(AM_CPPFLAGS) $(SUPERLUCPPFLAGS)

or the makefile-default variable
AM_CPPFLAGS = @AM_CPPFLAGS@ $ (SUPERLUCPPFLAGS)

Values for these variables are determined by configure, thus they are configure-substituted.
Usually, configure.ac must call the right autoconf macro to determine these variables.

Note that the variable name with an underscore LIB_CPPFLAGS is not recommendedﬁ, although
this pattern is common.

Commonly used variables are:

preprocessor flags These flags are passed in any build rule that calls the preprocessor. If there is a
target-specific variable target CPPFLAGS defined, the flags are given by

$ (DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(target_CPPFLAGS) $(CPPFLAGS)

2autoconf manual, AC_ARG_VAR
3 Autoconf manual, section “Flag Variables Ordering”

5 Building Single Modules Using the GNU AutoTools

otherwise

$ (DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS)

is used.

DEFS Class: configure-substituted. Contains all the preprocessor defines from ac_perive and
friends. If a config.h header is used, contains just the value ~-DHAVE_CONFIG_H instead.

DEFAULT_INCLUDES Class: configure-substituted. This variables contains a set of default
include paths: -I., -I$(srcdir), and an path to the directory of config.h, if that is used.

INCLUDES Class: automake. This is an obsolete alternative to AM_CPPFLAGS. Use that instead.

target CPPFLAGS Class: target-specific. Target-specific preprocessor flags. If this variable
exists, it overrides AM_CPPFLAGS and causes the renaming of object ﬁles@

AM_CPPFLAGS Class: automake. This is the makefile default for any preprocessor flags.

CPPFLAGS Class: user, configure-substituted. Flags given by the user, either to configure
or when invoking make. If the user didn’t provide any value to configure, it may contain
debugging and optimization options per default (like ~-DNDEBUG). The value of CPPFLAGS
always appears after the other preprocessor flags.

LIBCPPFLAGS Class: external-library. Preprocessor flags when building with library LIB. This
variable should be include in target CPPFLAGS or AM_CPPFLAGS in the Makefile.am.

C-compiler flags These flags are passed in any build rule that calls the C compiler or the C linker. If
there is a target-specific variable target CFLAGS defined, the flags are given by

$(target _CFLAGS) $(CFLAGS)

otherwise

$ (AM_CFLAGS) $(CFLAGS)

is used.

target CFLAGS Class: target-specific. Target-specific C compiler flags. If this variable exists,
it overrides AM_CFLAGS and causes the renaming of object filed.

AM_CFLAGS Class: automake. This is the makefile default for any C compiler flags.

CFLAGS Class: user, configure-substituted. Flags given by the user, either to configure or
when invoking make. If the user didn’t provide any value to configure, it may contain
debugging, optimization and warning options per default (like -g -02 -Wall). The value
of CFLAGS always appears after the other C compiler flags.

C++4-compiler flags These flags are passed in any build rule that calls the C++ compiler or the C++
linker. If there is a target-specific variable target CXXFLAGS defined, the flags are given by

$(target_CXXFLAGS) $(CXXFLAGS)

otherwise

4automake manual, “Why are object files sometimes renamed?”
Sautomake manual, “Why are object files sometimes renamed?”

10

5 Building Single Modules Using the GNU AutoTools

$ (AM_CXXFLAGS) $(CXXFLAGS)

is used.

target CXXFLAGS Class: target-specific. Target-specific C++ compiler flags. If this variable
exists, it overrides AM_CXXFLAGS and causes the renaming of object filedd.

AM_CXXFLAGS Class: automake. This is the makefile default for any C+4 compiler flags.

CXXFLAGS Class: user, configure-substituted. Flags given by the user, either to configure
or when invoking make. If the user didn’t provide any value to configure, it may contain
debugging, optimization and warning options per default (like -g -02 -Wall). The value
of CXXFLAGS always appears after the other C++ compiler flags.

linker flags These flags are passed in any build rule that calls the linker. If there is a target-specific
variable target LDFLAGS defined, the flags are given by

$(target_LDFLAGS) $(LDFLAGS)

otherwise
$ (AM_LDFLAGS) $(LDFLAGS)

is used. These variables are inappropriate to pass any options or parameters that specify libraries
of object files, in particular -L or -1 or the libtool options -dlopen and -dlpreopen. Use a
variable from the libraries to link to set to do that.

target LDFLAGS Class: target-specific. Target-specific C++ compiler flags. If this variable
exists, it overrides AM_LDFLAGS. The existence of this variable does not cause renaming of
object filed.

AM_LDFLAGS Class: automake. This is the makefile default for any linker flags.

LDFLAGS Class: user, configure-substituted. Flags given by the user, either to configure
or when invoking make. If the user didn’t provide any value to configure, it may contain
debugging, optimization and warning options per default. The value of LDFLAGS always
appears after the other linker flags.

LIBLDFLAGS Class: external-library. Linker flags needed when linking to library LIB. This
variable should be include in target LDFLAGS or AM_LDFLAGS in the Makefile.am.

libraries to link to These variables are used to determine the libraries and object files to link to. They
are passed whenever the linker is called. When linking a program, extra libraries and objects to
link to are given by

$ (target _LDADD) $(LIBS)

If the target-specific variable target LDADD is not defined, automake supplies

target_LDADD = $(LDADD)

When linking a library, extra libraries and objects to link to are given by

Sautomake manual, “Why are object files sometimes renamed?”
Tautomake manual, “Why are object files sometimes renamed?”

11

5 Building Single Modules Using the GNU AutoTools

$(target _LIBADD) $(LIBS)

If the target-specific variable target LIBADD is not defined, automake defines it empty

target _LIBADD =

Libraries and objects to link to must be given in reverse order: a library or object file must come
before the libraries or object files it depends on on the linker command line. Thus the value of
the LIBS variable is included after the value of the target LDADD or target LIBADD variable.

In general, any linker flags and argument that specify libraries and object files should be included
in these variables, and nothing else. In particular that means library and object file names, the
options -L and -1, and the libtool options -dlopen and -dlpreopen. The option -L should
come directly before any -1 options it sets the linker path for, otherwise a path set by another
-L option may take precedence, which may happen to contain a library by the same name.

target LDADD Class: target-specific. Target-specific libraries and objects to link to for pro-
grams. If this variable does not exist, it defaults to $(LDADD).

LDADD Class: automake. Libraries and objects to link to for programs. Default for target LDADD.

target LIBADD Class: target-specific. Target-specific objects to link to for libraries. If the
target is a libtool library, then other libtool libraries may also be specified here. This
variable has no makefile-wide default, if it does not exist the empty value is assumed.

LIBS Class: automake, configure-substituted. Libraries discovered by configure.

LIBLIBS Class: external-library. Libraries and object files needed to linking against library
LIB, including that library itself. This variable should be include in target LDADD, LDADD,
or target LIBADD in the Makefile.am.

Individual library variables

MPI

DUNE

The DUNE_MPI macro sets the following variables with the help of the macros MPI_CONFIG and
ACX_MPI: For compilation with the MPI compiler MPICC and MPILIBS. These are not used in DUNE
except that MPICC may be set on the configure command line to select which MPI installation
to use. For compilation with the standard compiler it sets DUNEMPICPPFLAGS, DUNEMPILDFLAGS
and DUNEMPILIBS, and the deprecated variables MPI_CPPFLAGS and MPI_LDFLAGS (note there
is no MPI_LIBS). Unfortunately with most MPI implementations it is impossible to obtain the
linker flags separately from the libraries to link to. Therefore, this macro stuffs everything into
DUNEMPILIBS, which has the advantage that it works and the disadvantage that users are unable
to overwrite the linker flags. If that is a problem users should set these variables themselves on
the configure command line.

In addition, this macro substitutes MPI_VERSION a text string identifying the detected version of
MPI. It defines the following preprocessor defines: MPI_2. defined if the detected MPI supports
the MPI-2 standard. HAVE_MPI, 1 if MPI is detected and enabled. It also defines the automake
conditional MPI.

modules For each DUNE module there are the variables MODULE _CPPFLAGS, MODULE _LDFLAGS and
MODULE LIBS. They contain everything to use that module with its most basic functionality. For
instance, for dune-grid they do not contain the stuff for MPI, Alberta, ALU Grid or UG, even

12

5 Building Single Modules Using the GNU AutoTools

if those were detected. They do contain the stuff for dune-common, possibly with duplicates
removed, since that is absolutely required for the operation of dune-grid. Example use:

foo_SOURCES = foo.cc
foo_CPPFLAGS = $(AM_CPPFLAGS) \

$ (UG_CPPFLAGS) \

$ (DUNE_GRID_CPPFLAGS)
foo_LDFLAGS = $(AM_LDFLAGS) \

$ (UG_LDFLAGS) \

$ (DUNE_GRID_LDFLAGS)
foo_LDADD = \

$ (DUNE_GRID_LIBS) \

$(UG_LIBS) \

$ (LDADD)

Note that there are no such variables for the current module — these variables are used in the
process of building the current module, so that module is incomplete when detecting these
variables. Note also that by “DUNE module” we mean a software package which uses the DUNE
build system, not one of the official dune modules.

Basic DUNE To use the basic functionality of all detected DUNE modules, the variables DUNE_CPPFLAGS,
DUNE_LDFLAGS and DUNE_LIBS may be used. They collect the contents of all DUNE module vari-
ables, possibly with duplicates removed.

Extended DUNE To use DUNE with all functionality that requires external libraries, the variables
ALL _PKG_CPPFLAGS, ALL_PKG_LDFLAGS and ALL_PKG_LIBS may be used. They provide everything
necessary to build with any external library detected by configure. In the case of Alberta a choice
must be made between 2D and 3D. Here the ALL_PKG_* variables just follow the choice of the
corresponding ALBERTA_* variables.

Conditional builds
Some parts of DUNE only make sense if certain add-on packages were found. autoconf therefore defines
conditionals which automake can use:

if OPENGL

PROGS = hello glhello
else

PROGS = hello
endif

hello_SOURCES = hello.c
glhello_SOURCES = glhello.c hello.c

This will only build the glhello program if OpenGL was found. An important feature of these
conditionals is that they work with any make program, even those without a native if construct like
GNU-make.

Default targets
An automake-generated Makefile does not only know the usual all, clean and install targets but also

tags travel recursively through the directories and create TAGS-files which can be used in many editors
to quickly find where symbols/functions are defined (use emacs-format)

ctags the same as "tags” but uses the vi-format for the tags-files

13

5 Building Single Modules Using the GNU AutoTools

dist create a distribution tarball
check run a set of regression tests

distcheck create a tarball and do a test-build if it really works

5.1.2 Building Documentation

If you want to build documentation you might need additional make rules. DUNE offers a set of
predefined rules to create certain kinds of documentation. Therefor you have to include the appropriate
rules from the am/ directory. These rules are stored in the dune-common/am/ directory. If you want
to use these any of these rules in your DUNE module or application you will have to create a symbolic
link to dune-common/am/. The creation of this link should be done by the dune-autogen script.

The build system automatically gives you two targets related to the documentation:

doc make the documentation,

doc-clean clean up all documentation-related stuff.

doxygen
The source code documentation system doxygen is the preferable way to document your source and
header files.

In order to build doxygen documentation you can include $ (top_srcdir) /am/doxygen. Additionally
you have create a file Doxylocal which contains your local doxygen configuration.

Your doxygen documentation should be located in the subdirectory doc/doxygen/ (see “Coding
Style” in the section “Developing Dune” on http://www.dune-project.org/|for details). After run-
ning duneproject the basic setup is already done.

You should only have one doxygen directory and the files are automatically installed into
$prefix/share/doc/$modulename/doxygen/. If for any reason you really have to change the instal-
lation path you can set the variable doxygendir after including am/doxygen.

The file doc/doxygen/Doxylocal contains the basic information where header and source files are lo-
cated in your project. Usually you will not have to adjust this file, it is already created by duneproject.
It only contains the very basic information. During the dune-autogen run the script dunedoxynize
uses the information contained in Doxylocal, merges them with the global DUNE doxygen styles and
writes Doxyfile.in, which will be translated into a full Doxyfile during the configure run. For
details about the configuration of doxygen and about documenting your source code we refer to the
doxygen web-site http://www.doxygen.org/.

html pages
Webpages are created from wml sources, using the program wml (http://thewml.org/).
$ (top-srcdir) /am/webstuff contains the necessary rules.

Add all html files to the PAGES variable to build and install them.

14

http://www.dune-project.org/
http://www.doxygen.org/
http://thewml.org/

5 Building Single Modules Using the GNU AutoTools

Listing 1 (File Makefile.am)

also build these sub directories
SUBDIRS = doxygen buildsystem comm

setting like in dune—web

CURDIR=doc

position of the web base directory,
relative to $(CURDIR)

BASEDIR=..

EXTRAINSTALL=example.opts

install the html pages

DOCFILES = $(PAGES)

DOCFILES_EXTRA = example.opts

EXTRA_DIST = CMakeLists.txt $(PAGES) example.opts

dist_man_MANS = dunecontrol.1l

include rules for wml —> html transformation
include $(top_srcdir)/am/webstuff

include further rules needed by Dune
include $(top_srcdir)/am/global-rules

BTeXdocuments
In order to compile IATEXdocuments you can include $(top_srcdir)/am/latex. This way you get
rules for creation of DVI files, PS files and PDF files.

SVG graphics

SVG graphics can be converted to png, in order to include them into the web page. This conversion
can be done using inkscape (http://www.inkscape.org/). $(top_srcdir)/am/inkscape.am offers
the necessary rules.

5.1.3 Automatic testing

Dune offers several special make targets, which help you find problems in your build system configu-
ration, or in your code.

check You can define lists of regression tests in your Makefile.am. These are run when you call make
check.

distcheck This target is already defined by automake. It creates a tarball, unpacks it, tries to do an
out-of-source build and runs the regression tests against this build.

sourcescheck This target tries to make sure that you don’t forget to install any important headers or
source files.

headercheck This target tries to make sure that your header files can be parsed and are self-contained.

The check target
TODO...

15

http://www.inkscape.org/

5 Building Single Modules Using the GNU AutoTools

The sourcescheck target
TODO...

The headercheck target
TODO...

5.2 configure.ac

configure.ac is a normal text file that contains several autoconf macros. These macros are evaluated
by the m4 macro processor and transformed into a shell script.

Listing 2 (File dune-common/configure.ac)

—x— Autoconf —*—
Process this file with autoconf to produce a configure script.

AC_PREREQ ([2.62])

DUNE_AC_INIT # gets module version from dune.module file
AC_CONFIG_SRCDIR([dune/common/stdstreams.cc])
AC_CONFIG_HEADERS ([config.hl])

add configure flags needed to create log files for dune—autobuild
DUNE_AUTOBUILD_FLAGS

check all dune dependecies and prerequisits

DUNE_CHECK_ALL

preset wvariable to path such that #include <dune/...> works
AC_SUBST ([DUNE_COMMON_ROOT], ’$(abs_top_srcdir)’)

AC_SUBST ([DUNE_COMMON_BIN], ’$(abs_top_srcdir)/bin/’)
AC_SUBST ([AM_CPPFLAGS], ’-I$(top_srcdir)’)

AC_SUBST ([AM_LDFLAGS], ’$(DUNE_LDFLAGS)’)

AC_SUBST ([LDADD], ’$(top_builddir)/lib/libdunecommon.la’)

write output

AC_CONFIG_FILES ([Makefile
lib/Makefile
bin/Makefile
cmake/Makefile
cmake/modules/Makefile
cmake/scripts/Makefile
cmake/pkg/Makefile
dune/Makefile
dune/common/Makefile
dune/common/test/Makefile
dune/common/parallel/Makefile
dune/common/parallel/test/Makefile
dune/common/std/Makefile
doc/Makefile
doc/comm/Makefile
doc/comm/figures/Makefile
doc/doxygen/Makefile
doc/doxygen/Doxyfile
doc/buildsystem/Makefile
m4/Makefile
am/Makefile
share/Makefile
share/bash-completion/Makefile
share/bash-completion/completions/Makefile
dune -common.pc])

make scripts executable

AC_CONFIG_FILES ([

16

5 Building Single Modules Using the GNU AutoTools

bin/check-log-storel, [
chmod +x bin/check-log-store])
AC_OUTPUT

print results
DUNE_SUMMARY_ALL

We offer a set of macros that can be used in your configure.ac:

e DUNE_CHECK_ALL runs all checks usually needed by a DUNE module. It checks for all dependen-
cies and suggestions and for their prerequisites. In order to make the dependencies known to
configure dune-autogen calls dunecontrol mécreate and write a file dependencies.m4.

e DUNE_AUTOBUILD_FLAGS adds configure flags needed to create log files for dune-autobuild. If
you want to add your module to the dune-autobuild system, you have to call this macro.

e DUNE_SUMMARY_ALL prints information on the results of all major checks run by DUNE_CHECK_ALL.

DUNE_CHECK_ALL defines the following variables that can be used in the configure script or in the
Makefile.am:

o DUNE MODULE _CPPFLAGS
e DUNE MODULE _LDFLAGS
e DUNE MODULE _LIBS

e DUNE MODULEROOT

The last step to a complete configure.ac is that you tell autoconf which files should be gener-
ated by configure. Therefore you add an AC_CONFIG_FILES([WhiteSpaceSeparatedListOfFiles])
statement to your configure.ac. The list of files should be the list of files that are to be generated,
not the input—i.e. you would write

AC_CONFIG_FILES ([Makefile doc/Makefile])

instead of

AC_CONFIG_FILES ([Makefile.in doc/Makefile.in])

After you told autoconf which files to create you have to actually trigger their creation with command
AC_OUTPUT.

5.3 Using configuration information provided by configure

The ./contigure script in the module produces a file config.h that contains information about the con-
figuration parameters, for example which of the optional grid implementations is available and which
dimension has been selected (if applicable). This information can then be used at compile-time to
include header files or code that depend on optional packages.

As an example, the macro HavE_emp can be used to compile code using the GNU Multiple Precision
Arithmetic Library (GMP) as in

17

5 Building Single Modules Using the GNU AutoTools

#ifdef HAVE.GMP

#include <gmp.h>

mpz_t d;

mpz_init_set_str(d, "14159265", 10);
#endif

In some cases the macro HAVE_<1ib> is set to ENABLE_<1ib>. In this case ENABLE_<1ib> is supposed to be
either false or true. It might be undefined which is equivalent to false. Thus the correct usage is
#if HAVE_<lib> instead of #ifdef HAVE_<lib>. The macro ENABLE_<1ib> is not intended for the user. It is a
trick to move the final definition of HAvE_<1ib> to the command line.

As an example, the macro mave_uc can be used to compile UG-specific code as in

#i1f HAVE.UG
#include <dune/grid/uggrid.hh>
#endif

It is important that the file config.n is the first included header in your application!

5.4 dune-autogen

The dune-autogen script is used to bring the freshly checked out module into that state that you
expect from a module received via the tarball. That means it runs all necessary steps so that you can
call configure to setup your module. In the case of DUNE this means that dune-autogen runs

e libtoolize (prepare the module for 1ibtool)

e dunecontrol mécreate (create an m4 file containing the dependencies of this module)
e aclocal (collect all autoconf macros needed for this module)

e autoheader (create the config.h.in)

e automake (create the Makefile.in)

e autoconf (create configure)

If needed it will also create the symbolic link to the dune-common/am/ directory (see E1.2I).

5.5 m4 files

m4/ files contain macros which are then composed into configure and are run during execution of
configure.

private m4 macros
You can add new tests to configure by providing additional macro files in the directory module/m4/.

dependencies.m4
$(top_srcdir)/dependencies.m4 hold all information about the dependencies and suggestions of this
module. It is an automatically generated file. It is generated by dunecontrol mé4create.

m4 module checks
For each dependencies of your module MODULE _CHECKS and MODULE _CHECK MODULE is called. Last
MODULE _CHECKS is called for your module, in order to check all prerequisites for your module.

18

6 Building Sets of Modules Using dunecontrol

When you have to provide the two macros MODULE _CHECKS and MODULE _CHECK_MODULE for your
module these should be written to a m4/*.m4 file.
Here follows an example for the module dune-foo:

dnl -*- autoconf -*-

Macros needed to find dune—foo and dependent libraries. They are
called by the macros in ${top_src_dir}/dependencies.m4, which is
generated by “dunecontrol autogen”

Additional checks needed to build dune—foo

This macro should be invoked by every module which depends on
dune—foo, as well as by dune—foo itself

AC_DEFUN ([DUNE_FOO_CHECKS]1)

Additional checks needed to find dune—foo
This macro should be invoked by every module which depends on dune—foo, but
not by dune—foo itself
AC_DEFUN ([DUNE_FOO_CHECK_MODULE], [
DUNE_CHECK_MODULES ([dune-foo], dnl module name
[foo/foo.hh], dnl header file
[Dune::FooFnkt]) dnl symbol in libdunefoo
n

The first one calls all checks required to make use of dune-foo. The dependency checks are not to
be included, they are run automatically. The second macro tells how to check for your module. In case
you are only writing an application and don’t want to make this module available to other modules,

you can just leave it empty. If you have to provide some way to find your module. The easiest is to
use the DUNE_CHECK_MODULES macro, which is defined in dune-common/m4/dune .m4.

6 Building Sets of Modules Using dunecontrol

dunecontrol helps you building the different DUNE modules in the appropriate order. Each module
has a dune.module file which contains information on the module needed by dunecontrol.
dunecontrol searches for dune.module files recursively from where you are executing the program.
For each DUNE module found it will execute a dunecontrol command. All commands offered by
dunecontrol have a default implementation. This default implementation can be overwritten and
extended in the dune.module file.
The commands you are interested in right now are

e autogen runs dune-autogen for each module. A list of directories containing dune.module files
and the parameters given on the command line are passed as parameters to dune-autogen.

e configure runs configure for each module. ——with-dune-module parameters are created for
a set of known DUNE modules.

e make runs make for each module.
e all runs dune-autogen, configure and make for each module.

In order to build DUNE the first time you will need the all command. In pseudo code all does the
following:

foreach ($module in $Modules) {
foreach (command in {autogen,configure ,make) {

19

6 Building Sets of Modules Using dunecontrol

run $command in $module
}
}

This differs from calling

dunecontrol autogen
dunecontrol configure
dunecontrol make

as it ensures that i.e. dune-common is fully built before configure is executed in dune-grid. Otherwise
configure in dune-grid would complain that libcommon.la from dune-common is missing.

Further more you can add parameters to the commands; these parameters get passed on to the
program being executed. Assuming you want to call make clean in all DUNE modules you can execute

dunecontrol make clean

opts files

You can also let dunecontrol read the command parameters from a file. For each command you
can specify parameters. The parameters are stored in a variable called COMMAND _FLAGS with COMMAND
written in capital letters.

Listing 3 (File example.opts)
use these options for configure if no options a provided on the cmdline
AUTOGEN_FLAGS="--ac=2.50,--am=1.8"

CONFIGURE_FLAGS="CXX=g++-4.9,--prefix=’/tmp/Hu Hu’"
MAKE_FLAGS=install

When you specify an opts file and command line parameters

dunecontrol --opts=some.opts configure --with-foo=bar
dunecontrol will ignore the parameters specified in the opts file and you will get a warning.

environment variables
You can further control the behavior of dunecontrol by certain environment variables.

e DUNE_CONTROL_PATH specifies the paths, where dunecontrol is searching for modules. All entries
have to be colon separated and should point to either a directory (which is search recursively for
dune.module files) or a directly dune.module file.

e DUNE_OPTS_FILE specifies the opts file that should be read by dunecontrol. This variable will
be overwritten by the --opts= option.

e MAKE tells dunecontrol which command to invoke for 'make’. This can be useful for example, if
you want to use gmake as a make drop-in.

e GREP tells dunecontrol which command to invoke for ’grep’.

opts file variables
Certain aspects of the build system can be specified via additional entries in the opts file:

e DUNE_CONTROL_PATH — see environment variables

20

6 Building Sets of Modules Using dunecontrol

e RESUME_FILE — see Resume build after error Section

e BUILDDIR configure the modules to use out-of-source build. The binaries are built in subdirecto-
ries of each module, named according to the BUILDDIR variable. If BUILDDIR is an absolute path
(starts with */?), the build directory is set to BUILDDIR/module-name for each module.

o COMMAND _FLAGS
the most important ones are:

— AUTOGEN_FLAGS specifies options for the dune-autogen script. This allows one to set
--acversion=VERSION or --amversion=VERSION to force usage of a specific
autoconf$VERSION or automake$VERSION.

— CONFIGURE_FLAGS specifies options you want to pass to configure. For a list of possible pa-
rameters see ./configure --help (note that this command is only available after running
dunecontrol autogen).

— MAKE_FLAGS specifies options for the make command, e.g. -j4 to allow four concurrent build
jobs.

6.1 dune.module

The dune.module file is split into two parts. First we have the parameter section where you specify
parameters describing the module. Then we have the command section where you can overload the
default implementation of a command called via dunecontrol.

Listing 4 (File dune.module)

parameters for dune control

Module: dune-grid

Version: 2.2-svn

Maintainer: dune@dune-project.org

Depends: dune-common (>= 2.2) dune-geometry (>= 2.2)
Extra-Suggests: UG Alberta Alu3d

overload the run_configure command
run_configure () {

lets extend the parameter list $CMD_FLAGS

if test "x$HAVE_UG" == "xyes"; then
CMD_FLAGS="$CMD_FLAGSU\"--with-ug=$PATH_UG\""

fi

if test "x$HAVE_Alberta" == "xyes"; then
CMD_FLAGS="$CMD_FLAGS ,\"--with-alberta=$PATH_Alberta\""

fi

if test "x$HAVE_Alu3d" == "xyes"; then
CMD_FLAGS="$CMD_FLAGSU\"——with—alugrid=$PATH_Alu3d\""

fi

call the default implementation
run_default_configure

The parameter section will be parsed by dunecontrol will effect i.e. the order in which the modules

are built. The parameters and their values are separated by colon. Possible parameters are

e Module (required) is the name of the module. The name is of the form [a-zA-Z0-9_-]+.

21

6 Building Sets of Modules Using dunecontrol

e Version (optional) is the module’s version.
e Maintainer (optional) is the email address of the module’s maintainer.

e Depends (required) takes a space separated list of required modules. This module is not functional
without these other modules. Checks whether the demanded version of the required modules is
provided.

e Suggests (optional) takes a space separated list of optional modules. This module is functional
without these other modules, but can offer further functionality if one or more of the suggested
modules are found.

The command section lets you overload the default implementation provided by dunecontrol. For
each command dunecontrol call the function run_command. The parameters from the command line
or the opts file are store in the variable $CMD_FLAGS. If you just want to create additional parameters
you can add these to $CMD_FLAGS and then call the default implementation of the command via
run_default_command.

6.2 DUNE-specific conditional builds

The Suggests parameter in the dune.module file, see [6.1] gives you the flexibility to optionally
build parts of your code depending on whether certain DUNE or external modules are installed or
not. As an example, we show in this section a DUNE module with suggestions for the modules
dune-localfunctions and dune-pdelab. A subdirectory my_pdelab_application should only be
built if these optional modules are installed. We assume that your project is set up in the traditional
automake fashion, i.e. there is a Makefile.am in every subdirectory.

Suppose your dune.module file has dependencies on dune-localfunctions and dune-pdelab spec-
ified in the Suggests section:

in the dune.module file
Module: my_application
Depends: dune-common dune-grid dune-istl
Suggests: dune-localfunctions dune-pdelab

There are three steps to take now:

1. Call DUNE_CHECK_MODULES from your local MODULE CHECK_MODULE macro to implicitly define an
AM_CONDITIONAL.

2. This conditional can be used in any Makefile.am for optional builds.

3. The Makefile in any optional sub-directory to be build has to be specified in configure.ac to
be created.

The automake conditional

If you call the macro DUNE_CHECK_MODULES during your build process, an AM_CONDITIONAL named
HAVE_SUGGESTEDMODULE is defined where SUGGESTEDMODULE is the name of the suggested module
in upper case, and with any - replaced by _. For example, for dune-pdelab the name would be
HAVE_DUNE_PDELAB. DUNE_CHECK_MODULES is defined in dune-common/m4/dune .m4, and it is documented
there. You should not call DUNE_CHECK_MODULES directly but in your local m4 file in your module where

22

6 Building Sets of Modules Using dunecontrol

your module’s checks are defined, see section For instance, if your module is dune-foo, this call
in a file dune-foo/m4/dune-foo.m4 would be

AC_DEFUN ([DUNE_FOO_CHECK_MODULE],
L

DUNE_CHECK_MODULES ([dune-fool, [foo/foo.hh])
1)

This way, the requested AM_CONDITIONAL is created implicitly.

The Makefile.am clause
Having the AM_CONDITIONAL named HAVE DUNE_PDELAB defined, you can use it in any Makefile.am of
your project to optionally build subdirectories or applications using dune-pdelab:

build the directory my_pdelab_application if dune—pdelab is installed
SUBDIRS = appll appl2
if HAVE_DUNE_PDELAB
SUBDIRS += my_pdelab_application
endif

Compare this DUNE-specific conditional build to general conditional builds in Section [5.11

The configure.ac entry
Additionally, you have to specify in your configure.ac (section[5.2]) that the makefile in the directory
my_pdelab_application should be built:

AC_CONFIG_FILES ([Makefile
my_pdelab_application/Makefile

AuAe—common.pc])
AC_OUTPUT
Now, your project is prepared to build the subdirectory my_pdelab_application if and only if your
machine has a successfully installed dune-pdelab.

6.3 Time savings using dunecontrol

dunecontrol can help working with a growing stack of depending DUNE modules and might save you
time.

Narrow down DUNE modules to apply actions to
Often you don’t want to let dunecontrol apply actions for every module but only the one you are
working on.

With the flag ——only=dune-foo in

./dune-common/bin/dunecontrol --module=dune-foo --opts=config.opts configure

only the module dune-foo will be configured by dunecontrol.

Using the flag ——current below a module’s root directory dunecontrol applies actions only for this
module.

To apply the actions to a module and all modules it depends on, set the flag ——module=dune-foo.

Updates from revision control systems
If modules are kept in a revision control system you need to stay up to date and download the newest
versions for your modules. The command update as in

23

7 Further documentation

./dune-common/bin/dunecontrol update

makes dunecontrol to update every module. Currently supported and automatically detected revision
control systems are the Concurrent Versions System (CVS), Apache Subversion (SVN) and Git.

Execute commands for every module
The dunecontrol command exec allows one to execute commands in the root directory of every
module. For example the statement

./dune-common/bin/dunecontrol exec "svn log -110"

shows the last ten Subversion commit messages for all modules. If a module is not under Subversion
version control the command execution fails and dunecontrol stops.

Resume build after error

dunecontrol stops whenever an error occurs. But you can resume from the module which failed. To

enable this feature, you have to specify the path of a resume file in the variable RESUME_FILE of your

options file and use the flag —~—resume. If dunecontrol fails it saves the name of the failing module in

the specified file. On the next run it recognizes the failed run and resumes from the failed module on.
dunecontrol skips the first module — the one with the error in the last run — after resuming if the

flag ——skipfirst is given together with --resume.

Use configure caching

configure is run for every module thus many tests are unnecessarily run multiple times. You can use
autoconf’s ability to cache test results. If you add --cache-file=/tmp/dune-config.cache to the
CONFIUGURE_FLAGS of you options file the configure cache is created. Be aware that the file persists
between dunecontrol runs. If you encounter any problems, you want to change the configuration or
to rerun all checks, the cache file should be removed manually.

Faster module search
If the environment variable DUNE_CONTROL_PATH is not set, dunecontrol recursively searches for DUNE
modules below the working directory. Depending on your installation, this search may take quite
a bit of time. It can be avoided by including the paths to the dune.module files of all modules in
DUNE_CONTROL_PATH.

This list of paths can actually be created on the fly by a command. Let us assume all DUNE modules
are in one directory, which is the working directory for dunecontrol, too. By adding the line

DUNE_CONTROL_PATH="‘ls */dune.module | tr ’\mn’> ’:’>¢"

to your opts file, no search will be performed. Instead, only the faster, non-recursive 1s command is
called.

7 Further documentation

automake & Makefile.am

http://www.gnu.org/software/automake/manual/

The automake manual describes in detail how to write and maintain a Makefile.am and the usage of
automake.

24

http://www.gnu.org/software/automake/manual/

7 Further documentation

autoconf & configure.ac

http://www.gnu.org/software/autoconf/manual/

The autoconf manual covers the usage of autoconf and how to write configure.ac files (sometimes
they are called configure.in).

Autoconf Macro Archive

http://autoconf-archive.cryp.to/

The Autoconf Macro Archive provides macros that can be integrated in your configure.ac in order
to search for certain software. These macros are useful to many software writers using the autoconf
tool, but too specific to be included into autoconf itself.

doxygen

http://www.doxygen.org/

The doxygen website offers documentation on how to document your source code and also on the
configuration parameters in your Doxylocal file.

libtool

http://www.gnu.org/software/libtool/manual.html

The 1ibtool manual offers further information on the usage of libtool package and gives a good
overview of the different problems/aspects of creating portable libraries.

autobook

http://sources.redhat.com/autobook/

The autobook is a complete book describing the GNU toolchain (autoconf, automake and libtool).
It contains many recipes on how to use the autotools. The book is available as an online version.

dune-project
http://www.dune-project.org/
The official homepage of DUNE.

25

http://www.gnu.org/software/autoconf/manual/
http://autoconf-archive.cryp.to/
http://www.doxygen.org/
http://www.gnu.org/software/libtool/manual.html
http://sources.redhat.com/autobook/
http://www.dune-project.org/

	Getting started
	Creating a new DUNE project
	Configuring new DUNE module using duneproject

	Dune module guidelines
	The Structure of DUNE
	Building Single Modules Using the GNU AutoTools
	Makefile.am
	Overview
	Building Documentation
	Automatic testing

	configure.ac
	Using configuration information provided by configure
	dune-autogen
	m4 files

	Building Sets of Modules Using dunecontrol
	dune.module
	DUNE-specific conditional builds
	Time savings using dunecontrol

	Further documentation

