3 #ifndef DUNE_DUAL_P1_LOCALBASIS_HH
4 #define DUNE_DUAL_P1_LOCALBASIS_HH
6 #include <dune/common/fvector.hh>
7 #include <dune/common/fmatrix.hh>
23 template<
class D,
class R,
int dim>
39 std::vector<typename Traits::RangeType>& out)
const
42 std::vector<typename Traits::RangeType> p1Values(
size());
46 for (
int i=0; i<dim; i++) {
48 p1Values[i+1] = in[i];
54 for (
int i=0; i<=dim; i++) {
55 out[i] = (dim+1)*p1Values[i];
56 for (
int j=0; j<i; j++)
57 out[i] -= p1Values[j];
59 for (
int j=i+1; j<=dim; j++)
60 out[i] -= p1Values[j];
67 std::vector<typename Traits::JacobianType>& out)
const
70 std::vector<typename Traits::JacobianType> p1Jacs(
size());
72 for (
int i=0; i<dim; i++)
75 for (
int i=0; i<dim; i++)
76 for (
int j=0; j<dim; j++)
77 p1Jacs[i+1][0][j] = (i==j);
82 for (
size_t i=0; i<=dim; i++) {
84 out[i][0].axpy((dim+1),p1Jacs[i][0]);
86 for (
size_t j=0; j<i; j++)
87 out[i][0] -= p1Jacs[j][0];
89 for (
int j=i+1; j<=dim; j++)
90 out[i][0] -= p1Jacs[j][0];
Type traits for LocalBasisVirtualInterface.
Definition: localbasis.hh:39
unsigned int order() const
Polynomial order of the shape functions.
Definition: dualp1localbasis.hh:95
void evaluateJacobian(const typename Traits::DomainType &in, std::vector< typename Traits::JacobianType > &out) const
Evaluate Jacobian of all shape functions.
Definition: dualp1localbasis.hh:66
Dual Lagrange shape functions on the simplex.
Definition: dualp1localbasis.hh:24
unsigned int size() const
number of shape functions
Definition: dualp1localbasis.hh:32
D DomainType
domain type
Definition: localbasis.hh:51
void evaluateFunction(const typename Traits::DomainType &in, std::vector< typename Traits::RangeType > &out) const
Evaluate all shape functions.
Definition: dualp1localbasis.hh:38
LocalBasisTraits< D, dim, Dune::FieldVector< D, dim >, R, 1, Dune::FieldVector< R, 1 >, Dune::FieldMatrix< R, 1, dim > > Traits
export type traits for function signature
Definition: dualp1localbasis.hh:29