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This document gives an introduction to the Distributed and Unified Numerics Environment (DUNE).
DUNE is a template library for the numerical solution of partial differential equations. It is based
on the following principles: i) Separation of data structures and algorithms by abstract interfaces, ii)
Efficient implementation of these interfaces using generic programming techniques (templates) in C++
and iii) Reuse of existing finite element packages with a large body of functionality. This introduction
covers only the abstract grid interface of DUNE which is currently the most developed part. However,
part of DUNE are also the Iterative Solver Template Library (ISTL, providing a large variety of
solvers for sparse linear systems) and a flexible class hierarchy for finite element methods. These will
be described in subsequent documents. Now have fun!

Thanks to Martin Drohmann for adapting this howto to version 1.2 of the DUNE grid interface.
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1 Introduction

1.1 What is DUNE anyway?

DUNE is a software framework for the numerical solution of partial differential equations with grid-
based methods. It is based on the following main principles:

• Separation of data structures and algorithms by abstract interfaces. This provides more function-
ality with less code and also ensures maintainability and extendability of the framework.

• Efficient implementation of these interfaces using generic programming techniques. Static poly-
morphism allows the compiler to do more optimizations, in particular function inlining, which
in turn allows the interface to have very small functions (implemented by one or few machine
instructions) without a severe performance penalty. In essence the algorithms are parametrized
with a particular data structure and the interface is removed at compile time. Thus the resulting
code is as efficient as if it would have been written for the special case.

• Reuse of existing finite element packages with a large body of functionality. In particular the
finite element codes UG, [2], Alberta, [8], and ALU3d, [3], have been adapted to the DUNE
framework. Thus, parallel and adaptive meshes with multiple element types and refinement
rules are available. All these packages can be linked together in one executable.

The framework consists of a number of modules which are downloadable as separate packages. The
current core modules are:

• dune-common contains the basic classes used by all DUNE-modules. It provides some infrastruc-
tural classes for debugging and exception handling as well as a library to handle dense matrices
and vectors.

• dune-grid is the most mature module and is covered in this document. It defines nonconforming,
hierarchically nested, multi-element-type, parallel grids in arbitrary space dimensions. Graphical
output with several packages is available, e. g. file output to IBM data explorer and VTK (parallel
XML format for unstructured grids). The graphics package Grape, [5] has been integrated in
interactive mode.

• dune-istl – Iterative Solver Template Library. Provides generic sparse matrix/vector classes
and a variety of solvers based on these classes. A special feature is the use of templates to exploit
the recursive block structure of finite element matrices at compile time. Available solvers include
Krylov methods, (block-) incomplete decompositions and aggregation-based algebraic multigrid.

• dune-localfunctions – Library of local base functions. Provides classes for base functions on
generic reference elements from which global discrete function spaces can be constructed.
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1 Introduction

Before starting to work with DUNE you might want to update your knowledge about C++ and
templates in particular. For that you should have the bible, [9], at your desk. A good introduction,
besides its age, is still the book by Barton and Nackman, [1]. The definitive guide to template
programming is [10]. A very useful compilation of template programming tricks with application to
scientific computing is given in [11] (if you can’t find it on the web, contact us).

1.2 Download

The source code of the DUNE framework can be downloaded from the web page. To get started,
it is easiest to download the latest stable version of the tarballs of dune-common, dune-grid and
dune-grid-howto. These are available on the DUNE download page:

http://www.dune-project.org/download.html

Alternatively, you can download the latest development version via anonymous SVN. For further
information, please see the web page.

1.3 Installation

The official installation instructions are available on the web page

http://www.dune-project.org/doc/installation-notes.html

Obviously, we do not want to copy all this information because it might get outdated and inconsistent
then. To make this document self-contained, we describe only how to install DUNE from the tarballs.
If you prefer to use the version from SVN, see the web page for further information. Moreover, we
assume that you use a UNIX system. If you have the Redmond system then ask them how to install
it.
In order to build the DUNE framework, you need a standards compliant C++ compiler. We tested

compiling with GNU g++ in version ≥ 3.4.1 and Intel icc, version 7.0 or 8.0.
Now extract the tarballs of dune-common, dune-grid and dune-grid-howto into a common direc-

tory, say dune-home. Change to this directory and call

> dune -common -1.0/ bin/dunecontrol all

Replace “1.0” by the actual version number of the package you downloaded if necessary. This should
configure and build all DUNE modules in dune-home with a basic configuration.
For many of the examples in this howto you need adaptive grids or the parallel features of DUNE.

To use adaptive grids, you need to install one of the external grid packages which DUNE provides
interfaces for, for instance Alberta, UG and ALUGrid.

• Alberta – http://www.alberta-fem.de/

• UG – http://sit.iwr.uni-heidelberg.de/~ug/

• ALUGrid – http://www.mathematik.uni-freiburg.de/IAM/Research/alugrid/
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To use the parallel code of DUNE, you need an implementation of the Message Passing Interface
(MPI), for example MPICH or LAM. For the DUNE build system to find these libraries, the configure
scripts of the particular DUNE modules must be passed the locations of the respective installations.
The dunecontrol script facilitates to pass options to the configure via a configuration file. Such a
configuration file might look like this:

CONFIGURE_FLAGS ="--with -alugrid =/path/to/alugrid/ "\

"--with -alberta =/path/to/alberta "\

"--with -ug=/path/to/ug --enable -parallel"

MAKE_FLAGS="-j 2"

If this is saved under the name dunecontrol.opts, you can tell dunecontrol to cinsider the file by
calling

> dune -common -1.0/ bin/dunecontrol --opts=dunecontrol.opts all

For information on how to build and configure the respective grids, please see the DUNE web page.

1.4 Code documentation

Documentation of the files and classes in DUNE is provided in code and can be extracted using the
doxygen1 software available elsewhere. The code documentation can either be built locally on your
machine (in html and other formats, e. g. LATEX) or its latest version is available at

http://www.dune-project.org/doc/

1.5 Licence

The DUNE library and headers are licensed under version 2 of the GNU General Public License2,
with a special exception for linking and compiling against DUNE, the so-called “runtime exception.”
The license is intended to be similar to the GNU Lesser General Public License, which by itself isn’t
suitable for a C++ template library.
The exact wording of the exception reads as follows:

As a special exception, you may use the DUNE source files as part of a software library
or application without restriction. Specifically, if other files instantiate templates or use
macros or inline functions from one or more of the DUNE source files, or you compile one
or more of the DUNE source files and link them with other files to produce an executable,
this does not by itself cause the resulting executable to be covered by the GNU General
Public License. This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License.

1http://www.doxygen.org/
2http://www.gnu.org/licenses/gpl-2.0.html
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2 Getting started

In this section we will take a quick tour through the abstract grid interface provided by DUNE. This
should give you an overview of the different classes before we go into the details.

2.1 Creating your first grid

Let us start with a replacement of the famous “hello world” program given below.

Listing 1 (File dune-grid-howto/gettingstarted.cc)

1 // $Id : g e t t i n g s t a r t e d . cc 198 2008−01−23 16:12 :41Z sander $

2

3 // Dune inc l ude s
4 #include"config.h" // f i l e cons t ruc t ed by ./ con f i gure s c r i p t
5 #include <dune/grid/sgrid.hh > // load s g r i d d e f i n i t i o n
6 #include <dune/grid/common/gridinfo.hh > // d e f i n i t i o n o f g r i d i n f o
7 #include <dune/common/mpihelper.hh > // inc lude mpi he l p e r c l a s s
8

9

10 int main(int argc , char **argv)

11 {

12 // i n i t i a l i z e MPI, f i n a l i z e i s done au toma t i ca l l y on e x i t
13 Dune:: MPIHelper :: instance(argc ,argv);

14

15 // s t a r t t r y / catch b l o c k to ge t error messages from dune
16 try{

17 // make a g r i d
18 const int dim =3;

19 typedef Dune::SGrid <dim ,dim > GridType;

20 Dune:: FieldVector <int ,dim > N(3);

21 Dune:: FieldVector <GridType ::ctype ,dim > L( -1.0);

22 Dune:: FieldVector <GridType ::ctype ,dim > H(1.0);

23 GridType grid(N,L,H);

24

25 // pr in t some informat ion about the g r i d
26 Dune:: gridinfo(grid);

27 }

28 catch (std:: exception & e) {

29 std::cout << "STL ERROR: " << e.what() << std::endl;

30 return 1;

31 }

32 catch (Dune:: Exception & e) {

33 std::cout << "DUNE ERROR: " << e.what() << std::endl;

34 return 1;

35 }

36 catch (...) {

37 std::cout << "Unknown ERROR" << std::endl;

38 return 1;

39 }

40

41 // done
42 return 0;

43 }
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This program is quite simple. It starts with some includes in lines 4-6. The file config.h has
been produced by the configure script in the application’s build system. It contains the current
configuration and can be used to compile different versions of your code depending on the con-
figuration selected. It is important that this file is included before any other DUNE header files.
The next file dune/grid/sgrid.hh includes the headers for the SGrid class which provides a special
implementation of the DUNE grid interface with a structured mesh of arbitrary dimension. Then
dune/grid/common/gridinfo.hh loads the headers of some functions which print useful information
about a grid.
Since the dimension will be used as a template parameter in many places below we define it as

a constant in line number 18. The SGrid class template takes two template parameters which are
the dimension of the grid and the dimension of the space where the grid is embedded in (its world
dimension). If the world dimension is strictly greater than the grid dimension the surplus coordinates
of each grid vertex are set to zero. For ease of writing we define in line 19 the type GridType using
the selected value for the dimension. All identifiers of the DUNE framework are within the Dune

namespace.
Lines 20-22 prepare the arguments for the construction of an SGrid object. These arguments use the

class template FieldVector<T,n> which is a vector with n components of type T. You can either assign
the same value to all components in the constructor (as is done here) or you could use operator[] to
assign values to individual components. The variable N defines the number of cells or elements to be
used in the respective dimension of the grid. L defines the coordinates of the lower left corner of the
cube and H defines the coordinates of the upper right corner of the cube. Finally in line 23 we are now
able to instantiate the SGrid object.
The only thing we do with the grid in this little example is printing some information about it.

After successfully running the executable gettingstarted you should see an output like this:

Listing 2 (Output of gettingstarted)

=> SGrid(dim=3, dimworld =3)

level 0 codim [0]=27 codim [1]=108 codim [2]=144 codim [3]=64

leaf codim [0]=27 codim [1]=108 codim [2]=144 codim [3]=64

leaf dim=3 geomTypes =((cube ,3)[0]=27 ,( cube ,2)[1]=108 ,( cube ,1)[2]=144 ,( cube ,0)[3]=64)

The first line tells you that you are looking at an SGrid object of the given dimensions. The DUNE
grid interface supports unstructured, locally refined, logically nested grids. The coarsest grid is called
level-0-grid or macro grid. Elements can be individually refined into a number of smaller elements.
Each element of the macro grid and all its descendants obtained from refinement form a tree structure.
All elements at depth n of a refinement tree form the level-n-grid. All elements that are leaves of a
refinement tree together form the so-called leaf grid. The second line of the output tells us that this
grid object consists only of a single level (level 0) while the next line tells us that that level 0 coincides
also with the leaf grid in this case. Each line reports about the number of grid entities which make
up the grid. We see that there are 27 elements (codimension 0), 108 faces (codimension 1), 144 edges
(codimension 2) and 64 vertices (codimension 3) in the grid. The last line reports on the different
types of entities making up the grid. In this case all entities are of type “cube”.

Exercise 2.1 Try to play around with different grid sizes by assigning different values to the N pa-
rameter. You can also change the dimension of the grid by varying dim. Don’t be modest. Also try
dimensions 4 and 5!

10



2 Getting started

Exercise 2.2 The static methods Dune::gridlevellist and Dune::gridleaflist produce a very
detailed output of the grid’s elements on a specified grid level. Change the code and print out this
information for the leaf grid or a grid on lower level. Try to understand the output.

2.2 Traversing a grid — A first look at the grid interface

After looking at very first simple example we are now ready to go on to a more complicated one. Here
it is:

Listing 3 (File dune-grid-howto/traversal.cc)

1 // $Id : t r a v e r s a l . cc 358 2011−05−26 15:50 :48Z sander $

2

3 // C/C++ inc l ude s
4 #include <iostream > // fo r standard I /O
5

6 // Dune inc l ude s
7 #include"config.h" // f i l e cons t ruc t ed by ./ con f i gure s c r i p t
8 #include <dune/grid/sgrid.hh > // load s g r i d d e f i n i t i o n
9 #include <dune/common/mpihelper.hh > // inc lude mpi he l p e r c l a s s

10

11

12 // example f o r a gener i c a lgor i thm tha t t r a v e r s e s
13 // the e n t i t i e s o f a g iven mesh in var ious ways
14 template <class G>

15 void traversal (G& grid)

16 {

17 // f i r s t we e x t r a c t the dimensions o f the g r i d
18 const int dim = G:: dimension;

19

20 // type used f o r coord ina te s in the g r i d
21 // such a type i s expor ted by every g r i d implementation
22 typedef typename G:: ctype ct;

23

24 // Leaf Traversa l
25 std::cout << "*** Traverse codim 0 leaves" << std::endl;

26

27 // type o f the GridView used f o r t r a v e r s a l
28 // every g r i d expor t s a LeafGridView and a LevelGridView
29 typedef typename G :: LeafGridView LeafGridView;

30

31 // ge t the ins tance o f the LeafGridView
32 LeafGridView leafView = grid.leafView ();

33

34 // Get the i t e r a t o r type
35 // Note the use o f the typename and templa te keywords
36 typedef typename LeafGridView :: template Codim <0>:: Iterator ElementLeafIterator ;

37

38 // i t e r a t e through a l l e n t i t i e s o f codim 0 at the l e a v e s
39 int count = 0;

40 for (ElementLeafIterator it = leafView.template begin <0>();

41 it!= leafView.template end <0>(); ++it)

42 {

43 Dune:: GeometryType gt = it ->type ();

44 std::cout << "visiting leaf " << gt

45 << " with first vertex at " << it ->geometry (). corner (0)

46 << std::endl;

47 count ++;

48 }

49
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50 std::cout << "there are/is " << count << " leaf element(s)" << std::endl;

51

52 // Leafwise t r a v e r s a l o f codim dim
53 std::cout << std::endl;

54 std::cout << "*** Traverse codim " << dim << " leaves" << std::endl;

55

56 // Get the i t e r a t o r type
57 // Note the use o f the typename and templa te keywords
58 typedef typename LeafGridView :: template Codim <dim >

59 :: Iterator VertexLeafIterator ;

60

61 // i t e r a t e through a l l e n t i t i e s o f codim 0 on the g iven l e v e l
62 count = 0;

63 for (VertexLeafIterator it = leafView.template begin <dim >();

64 it!= leafView.template end <dim >(); ++it)

65 {

66 Dune:: GeometryType gt = it ->type ();

67 std::cout << "visiting " << gt

68 << " at " << it ->geometry (). corner (0)

69 << std::endl;

70 count ++;

71 }

72 std::cout << "there are/is " << count << " leaf vertices(s)"

73 << std::endl;

74

75 // Leve lw i se t r a v e r s a l o f codim 0
76 std::cout << std::endl;

77 std::cout << "*** Traverse codim 0 level -wise" << std::endl;

78

79 // type o f the GridView used f o r t r a v e r s a l
80 // every g r i d expor t s a LeafGridView and a LevelGridView
81 typedef typename G :: LevelGridView LevelGridView ;

82

83 // Get the i t e r a t o r type
84 // Note the use o f the typename and templa te keywords
85 typedef typename LevelGridView :: template Codim <0>

86 :: Iterator ElementLevelIterator;

87

88 // i t e r a t e through a l l e n t i t i e s o f codim 0 on the g iven l e v e l
89 for (int level =0; level <=grid.maxLevel (); level ++)

90 {

91 // ge t the ins tance o f the LeafGridView
92 LevelGridView levelView = grid.levelView(level );

93

94 count = 0;

95 for (ElementLevelIterator it = levelView.template begin <0>();

96 it!= levelView.template end <0>(); ++it)

97 {

98 Dune:: GeometryType gt = it ->type ();

99 std::cout << "visiting " << gt

100 << " with first vertex at " << it ->geometry (). corner (0)

101 << std::endl;

102 count ++;

103 }

104 std::cout << "there are/is " << count << " element(s) on level "

105 << level << std::endl;

106 std::cout << std::endl;

107 }

108 }

109

110

111 int main(int argc , char **argv)

112 {
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113 // i n i t i a l i z e MPI, f i n a l i z e i s done au toma t i ca l l y on e x i t
114 Dune:: MPIHelper :: instance(argc ,argv);

115

116 // s t a r t t r y / catch b l o c k to ge t error messages from dune
117 try {

118 // make a g r i d
119 const int dim =2;

120 typedef Dune::SGrid <dim ,dim > GridType;

121 Dune:: FieldVector <int ,dim > N(1);

122 Dune:: FieldVector <GridType ::ctype ,dim > L( -1.0);

123 Dune:: FieldVector <GridType ::ctype ,dim > H(1.0);

124 GridType grid(N,L,H);

125

126 // r e f i n e a l l e lements once us ing the standard ref inement ru l e
127 grid.globalRefine (1);

128

129 // t r a v e r s e the g r i d and pr in t some in f o
130 traversal(grid);

131 }

132 catch (std:: exception & e) {

133 std::cout << "STL ERROR: " << e.what() << std::endl;

134 return 1;

135 }

136 catch (Dune:: Exception & e) {

137 std::cout << "DUNE ERROR: " << e.what() << std::endl;

138 return 1;

139 }

140 catch (...) {

141 std::cout << "Unknown ERROR" << std::endl;

142 return 1;

143 }

144

145 // done
146 return 0;

147 }

The main function near the end of the listing is pretty similar to the previous one except that we use
a 2d grid for the unit square that just consists of one cell. In line 127 this cell is refined once using the
standard method of grid refinement of the implementation. Here, the cell is refined into four smaller
cells. The main work is done in a call to the function traversal in line 130. This function is given in
lines 14-108.
The function traversal is a function template that is parametrized by a class G that is assumed to

implement the DUNE grid interface. Thus, it will work on any grid available in DUNE without any
changes. We now go into the details of this function.
The algorithm should work in any dimension so we extract the grid’s dimension in line 18. Next,

each DUNE grid defines a type that it uses to represent positions. This type is extracted in line 22
for later use.
A grid is considered to be a container of “entities” which are abstractions for geometric objects like

vertices, edges, quadrilaterals, tetrahedra, and so on. This is very similar to the standard template
library (STL), see e. g. [9], which is part of any C++ system. A key difference is, however, that there
is not just one type of entity but several. As in the STL the elements of any container can be accessed
with iterators which are generalized pointers. Again, a DUNE grid knows several different iterators
which provide access to the different kinds of entities and which also provide different patterns of
access.
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As we usually do not want to use the entire hierarchy of the grid, we first define a view on that part
of the grid we are interested in. This can be a level or the leaf part of the grid. In line 29 a type for a
GridView on the leaf grid is defined.
Line 36 extracts the type of an iterator from this view class. Codim is a struct within the grid class

that takes an integer template parameter specifying the codimension over which to iterate. Within the
Codim structure the type Iterator is defined. Since we specified codimension 0 this iterator is used to
iterate over the elements which are not refined any further, i.e. which are the leaves of the refinement
trees.
The for-loop in line 40 now visits every such element. The begin and end on the LeafGridView

class deliver the first leaf element and one past the last leaf element. Note that the template keyword
must be used and template parameters are passed explicitly. Within the loop body in lines 42-48 the
iterator it acts like a pointer to an entity of dimension dim and codimension 0. The exact type would
be typename G::template Codim<0>::Entity just to mention it.
An important part of an entity is its geometrical shape and position. All geometrical information is

factored out into a sub-object that can be accessed via the geometry() method. The geometry object
is in general a mapping from a d-dimensional polyhedral reference element to w dimensional space.
Here we have d = G::dimension and w = G::dimensionworld. This mapping is also called the “local
to global” mapping. The corresponding reference element has a certain type which is extracted in line
43. Since the reference elements are polyhedra they consist of a finite number of corners. The images
of the corners under the local to global map can be accessed via the corner(int n) method. Line 44
prints the geometry type and the position of the first corner of the element. Then line 47 just counts
the number of elements visited.
Suppose now that we wanted to iterate over the vertices of the leaf grid instead of the elements. Now

vertices have the codimension dim in a dim-dimensional grid and a corresponding iterator is provided
by each grid class. It is extracted in line 59 for later use. The for-loop starting in line 63 is very
similar to the first one except that it now uses the VertexLeafIterator. As you can see the different
entities can be accessed with the same methods. We will see later that codimensions 0 and dim are
specializations with an extended interface compared to all other codimensions. You can also access
the codimensions between 0 and dim. However, currently not all implementations of the grid interface
support these intermediate codimensions (though this does not restrict the implementation of finite
element methods with degrees of freedom associated to, say, faces).
Finally, we show in lines 81-107 how the hierarchic structure of the mesh can be accessed. To that

end a LevelGridView is used. It provides via an Iterator access to all entities of a given codimension
(here 0) on a given grid level. The coarsest grid level (the initial macro grid) has number zero and
the number of the finest grid level is returned by the maxLevel() method of the grid. The methods
begin() and end() on the view deliver iterators to the first and one-past-the-last entity of a given
grid level supplied as an integer argument to these methods.
The following listing shows the output of the program.

Listing 4 (Output of traversal)

*** Traverse codim 0 leaves

visiting leaf (cube , 2) with first vertex at -1 -1

visiting leaf (cube , 2) with first vertex at 0 -1

visiting leaf (cube , 2) with first vertex at -1 0

visiting leaf (cube , 2) with first vertex at 0 0

there are/is 4 leaf element(s)
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*** Traverse codim 2 leaves

visiting (cube , 0) at -1 -1

visiting (cube , 0) at 0 -1

visiting (cube , 0) at 1 -1

visiting (cube , 0) at -1 0

visiting (cube , 0) at 0 0

visiting (cube , 0) at 1 0

visiting (cube , 0) at -1 1

visiting (cube , 0) at 0 1

visiting (cube , 0) at 1 1

there are/is 9 leaf vertices(s)

*** Traverse codim 0 level -wise

visiting (cube , 2) with first vertex at -1 -1

there are/is 1 element(s) on level 0

visiting (cube , 2) with first vertex at -1 -1

visiting (cube , 2) with first vertex at 0 -1

visiting (cube , 2) with first vertex at -1 0

visiting (cube , 2) with first vertex at 0 0

there are/is 4 element(s) on level 1

Remark 2.3 Define the end iterator for efficiency.

Exercise 2.4 Play with different dimensions, codimension (SGrid supports all codimenions) and re-
finements.

Exercise 2.5 The method corners() of the geometry returns the number of corners of an entity.
Modify the code such that the positions of all corners are printed.
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3.1 Grid definition

There is a great variety of grids: conforming and non-conforming grids, single-element-type and
multiple-element-type grids, locally and globally refined grids, nested and non-nested grids, bisection-
type grids, red-green-type grids, sparse grids and so on. In this section we describe in some detail the
type of grids that are covered by the DUNE grid interface.

Reference elements
A computational grid is a non-overlapping subdivision of a domain Ω ⊂ R

w into elements of “simple”
shape. Here “simple” means that the element can be represented as the image of a reference element
under a transformation. A reference element is a convex polytope, which is a bounded intersection of
a finite set of half-spaces.

Dimension and world dimension
A grid has a dimension d which is the dimensionality of its reference elements. Clearly we have d ≤ w.
In the case d < w the grid discretizes a d-dimensional manifold.

Faces, entities and codimension
The intersection of a d-dimensional convex polytope (in d-dimensional space) with a tangent plane
is called a face (note that there are faces of dimensionality 0, . . . , d − 1). Consequently, a face of a
grid element is defined as the image of a face of its reference element under the transformation. The
elements and faces of elements of a grid are called its entities. An entity is said to be of codimension
c if it is a d− c-dimensional object. Thus the elements of the grid are entities of codimension 0, facets
of an element have codimension 1, edges have codimension d− 1 and vertices have codimension d.

Conformity
Computational grids come in a variety of flavours: A conforming grid is one where the intersection of
two elements is either empty or a face of each of the two elements. Grids where the intersection of two
elements may have an arbitrary shape are called nonconforming.

Element types
A simplicial grid is one where the reference elements are simplices. In a multi-element-type grid a finite
number of different reference elements are allowed. The DUNE grid interface can represent conforming
as well as non-conforming grids.

Hierarchically nested grids, macro grid
A hierarchically nested grid consists of a collection of J + 1 grids that are subdivisions of nested
domains

Ω = Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩJ .

Note that only Ω0 is required to be identical to Ω. If Ω0 = Ω1 = . . . = ΩJ the grid is globally refined,
otherwise it is locally refined. The grid that discretizes Ω0 is called the macro grid and its elements
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the macro elements. The grid for Ωl+1 is obtained from the grid for Ωl by possibly subdividing each
of its elements into smaller elements. Thus, each element of the macro grid and the elements that are
obtained from refining it form a tree structure. The grid discretizing Ωl with 0 ≤ l ≤ J is called the
level-l-grid and its elements are obtained from an l-fold refinement of some macro elements.

Leaf grid
Due to the nestedness of the domains we can partition the domain Ω into

Ω = ΩJ ∪
J−1⋃

l=0

Ωl \ Ωl+1.

As a consequence of the hierarchical construction a computational grid discretizing Ω can be obtained
by taking the elements of the level-J-grid plus the elements of the level-J−1-grid in the region ΩJ−1\ΩJ

plus the elements of the level-J − 2-grid in the region ΩJ−2 \ΩJ−1 and so on plus the elements of the
level-0-grid in the region Ω0 \Ω1. The grid resulting from this procedure is called the leaf grid because
it is formed by the leaf elements of the trees emanating at the macro elements.

Refinement rules
There is a variety of ways how to hierarchically refine a grid. The refinement is called conforming if
the leaf grid is always a conforming grid, otherwise the refinement is called non-conforming. Note that
the grid on each level l might be conforming while the leaf grid is not. There are also many ways how
to subdivide an individual element into smaller elements. Bisection always subdivides elements into
two smaller elements, thus the resulting data structure is a binary tree (independent of the dimension
of the grid). Bisection is sometimes called “green” refinement. The so-called “red” refinement is the
subdivision of an element into 2d smaller elements, which is most obvious for cube elements. In many
practical situation anisotropic refinement, i. e. refinement in a preferred direction, may be required.

Summary
The DUNE grid interface is able to represent grids with the following properties:

• Arbitrary dimension.

• Entities of all codimensions.

• Any kind of reference elements (you could define the icosahedron as a reference element if you
wish).

• Conforming and non-conforming grids.

• Grids are always hierarchically nested.

• Any type of refinement rules.

• Conforming and non-conforming refinement.

• Parallel, distributed grids.
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3.2 Concepts

Generic algorithms are based on concepts. A concept is a kind of “generalized” class with a well
defined set of members. Imagine a function template that takes a type T as template argument. All
the members of T, i.e. methods, enumerations, data (rarely) and nested classes used by the function
template form the concept. From that definition it is clear that the concept does not necessarily exist
as program text.
A class that implements a concept is called a model of the concept. E. g. in the standard template

library (STL) the class std::vector<int> is a model of the concept “container”. If all instances of
a class template are a model of a given concept we can also say that the class template is a model of
the concept. In that sense std::vector is also a model of container.
In standard OO language a concept would be formulated as an abstract base class and all the models

would be implemented as derived classes. However, for reasons of efficiency we do not want to use
dynamic polymorphism. Moreover, concepts are more powerful because the models of a concept can
use different types, e. g. as return types of methods. As an example consider the STL where the
begin method on a vector of int returns std::vector<int>::iterator and on a list of int it returns
std::list<int>::iterator which may be completely different types.

Concepts are difficult to describe when they do not exist as concrete entities (classes or class tem-
plates) in a program. The STL way of specifying concepts is to describe the members X::foo() of
some arbitrary model named X. Since this decription of the concept is not processed by the compiler
it can get inconsistent and there is no way to check conformity of a model to the interface. As a
consequence, strange error messages from the compiler may be the result (well C++ compilers can
always produce strange error messages). There are two ways to improve the situation:

• Engines: A class template is defined that wraps the model (which is the template parameter)
and forwards all member function calls to it. In addition all the nested types and enumerations
of the model are copied into the wrapper class. The model can be seen as an engine that powers
the wrapper class, hence the name. Generic algorithms are written in terms of the wrapper class.
Thus the wrapper class encapsulates the concept and it can be ensured formally by the compiler
that all members of the concept are implemented.

• Barton-Nackman trick: This is a refinement of the engine approach where the models are derived
from the wrapper class template in addition. Thus static polymorphism is combined with a
traditional class hierarchy, see [11, 1]. However, the Barton-Nackman trick gets rather involved
when the derived classes depend on additional template parameters and several types are related
with each other. That is why it is not used at all places in DUNE.

The DUNE grid interface now consists of a set of related concepts. Either the engine or the Barton-
Nackman approach are used to clearly define the concepts. In order to avoid any inconsistencies
we refer as much as possible to the doxygen-generated documentation. For an overview of the grid
interface see the web page

http://www.dune-project.org/doc/doxygen/html/group__Grid.html.

3.2.1 Common types

Some types in the grid interface do not depend on a specific model, i. e. they are shared by all
implementations.
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Dune::GenericReferenceElement
describes the topology and geometry of standard entities. Any given entity of the grid can be completely
specified by a reference element and a map from this reference element to world coordinate space.

Dune::GeometryType
defines names for the reference elements.

Dune::CollectiveCommunication
defines an interface to global communication operations in a portable and transparent way. In partic-
ular also for sequential grids.

3.2.2 Concepts of the DUNE grid interface

In the following a short description of each concept in the DUNE grid interface is given. For the details
click on the link that leads you to the documentation of the corresponding wrapper class template (in
the engine sense).

Grid
The grid is a container of entities that allows to access these entities and that knows the number of
its entities. You create instances of a grid class in your applications, while objects of the other classes
are typically aggregated in the grid class and accessed via iterators.

GridView
The GridView gives a view on a level or the leaf part of a grid. It provides iterators for access to
the elements of this view and a communication method for parallel computations. Alternatively, a
LevelIterator of a LeafIterator can be directly accessed from a grid. These iterator types are described
below.

Entity
The entity class encapsulates the topological part of an entity, i. e. its hierarchical construction from
subentities and the relation to other entities. Entities cannot be created, copied or modified by the
user. They can only be read-accessed through immutable iterators.

Geometry
Geometry encapsulates the geometric part of an entity by mapping local coordinates in a reference
element to world coordinates.

EntityPointer
EntityPointer is a dereferenceable type that delivers a reference to an entity. Moreover it is immutable,
i. e. the referenced entity can not be modified.

Iterator
Iterator is an immutable iterator that provides access to an entity. It can by incremented to visit all
entities of a given codimension of a GridView. An EntityPointer is assignable from an Iterator.

IntersectionIterator
IntersectionIterator provides access to all entities of codimension 0 that have an intersection of codi-
mension 1 with a given entity of codimension 0. In a conforming mesh these are the face neighbors
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of an element. For two entities with a common intersection the IntersectionIterator can be derefer-
enced as an Intersection object which in turn provides information about the geometric location of
the intersection. Furthermore this Intersection class also provides information about intersections of
an entity with the internal or external boundaries. The IntersectionIterator provides intersections
between codimension 0 entities among the same GridView.

LevelIndexSet, LeafIndexSet
LevelIndexSet and LeafIndexSet, which are both models of Dune::IndexSet, are used to attach any
kind of user-defined data to (subsets of) entities of the grid. This data is supposed to be stored in
one-dimensional arrays for reasons of efficiency. An IndexSet is usually not used directly but through
a Mapper (c.f. chapter 6.1).

LocalIdSet, GlobalIdSet
LocalIdSet and GlobalIdSet which are both models of Dune::IdSet are used to save user data during
a grid refinement phase and during dynamic load balancing in the parallel case. The LocalIdSet is
unique for all entities on the current partition, whereas the GlobalIdSet gives a unique mapping over
all grid partitions. An IdSet is usually not used directly but through a Mapper (c.f. chapter 6.1).

3.3 Propagation of type information

The types making up one grid implementation cannot be mixed with the types making up another
grid implementation. Say, we have two implementations of the grid interface XGrid and YGrid. Each
implementation provides a LevelIterator class, named XLevelIterator and YLevelIterator (in fact,
these are class templates because they are parametrized by the codimension and other parameters).
Although these types implement the same interface they are distinct classes that are not related in
any way for the compiler. As in the Standard Template Library strange error messages may occur if
you try to mix these types.
In order to avoid these problems the related types of an implementation are provided as public types

by most classes of an implementation. E. g., in order to extract the XLevelIterator (for codimension
0) from the XGrid class you would write

XGrid :: template Codim <0>:: LevelIterator

Because most of the types are parametrized by certain parameters like dimension, codimension or
partition type simple typedefs (as in the STL) are not sufficient here. The types are rather placed in
a struct template, named Codim here, where the template parameters of the struct are those of the
type. This concept may even be applied recursively.
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So far we have talked about the grid interface and how you can access and manipulate grids. This
chapter will show you how you create grids in the first place. There are several ways to do this.
The central idea of DUNE is that all grid implementations behave equally and conform to the

same interface. However, this concept fails when it comes to constructing grid objects, because grid
implementations differ too much to make one construction method work for all. For example, for an
unstructured grid you have to specify all vertex positions, whereas for a structured grid this would be
a waste of time. On the other hand, for a structured grid you may need to give the bounding box
which, for an unstructured grid, is not necessary. In practice, these differences do not pose serious
problems.
In this chapter, creating a grid always means creating a grid with only a single level. Such grid is

alternatively called a coarse grid or a macro grid. There is currently no functionality in DUNE to set
up hierarchical grids directly. The underlying assumption is that the user will create a coarse grid
first and then generate a hierarchy using refinement. Despite the name (and grid implementations
permitting), the coarse grid can of course be as large and fine as desired.

4.1 Creating Structured Grids

Creating structured grids is comparatively simple, as little information needs to be provided. In
general, for uniform structured grids, the grid dimension, bounding box, and number of elements in
each direction suffices. Such information can be given directly with the constructor of the grid object.
DUNE does not currently specify the signature of grid constructors, and hence they are all slightly
different. For example, to create a 2D SGrid in [0, 1]2 ⊂ R

2 with 10 elements in each direction call

Dune:: FieldVector <int ,2> n;

n[0] = n[1] = 10;

Dune:: FieldVector <double ,2> lower;

lower [0] = lower [1] = 0.0;

Dune:: FieldVector <double ,2> upper;

upper [0] = upper [1] = 1.0;

Dune::SGrid <2,2> grid(n, lower , upper );

If you want to do the same for a sequential YaspGrid the code is

Dune:: FieldVector <int ,2> n;

n[0] = n[1] = 10;

Dune:: FieldVector <double ,2> upper;
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upper [0] = upper [1] = 1.0;

Dune:: FieldVector <bool ,dim > periodic(false );

YaspGrid <2> grid(upper , n, periodic , 0);

Note that you do not have to specify the lower left corner as YaspGrid hardwires it to zero. The
unstructured one-dimensional OneDGrid also has a constructor

OneDGrid grid(10, // number o f e l emen t s
0.0, // l e f t domain boundary
1.0 // r i g h t domain boundary
);

for uniform grids.

4.2 Reading Unstructured Grids from Files

Unstructured grids usually require much more information than what can reasonable be provided
within the program code. Instead, they are usually read from special files. A large variety of different
file formats for finite element grids exists, and DUNE provides support for some of them. Again, no
interface specification exists for file readers in DUNE.
Arguably the most important file format currently supported by DUNE is the gmsh format. Gmsh1

is an open-source geometry modeler and grid generator. It allows to define geometries using a bound-
ary representation (interactively and via its own modeling language resulting in .geo-files), creates
simplicial grids in 2d and 3d (using tetgen or netgen) and stores them in files ending in .msh. Cur-
rent precompiled releases ≥ 2.4.2 of Gmsh have OpenCascade, an open-source CAD kernel, as built-in
geometry modeler. Thus these releases are able to import CAD geometries, e. g. from IGES or STEP
files, and to generate meshes for them to be subsequently used in DUNE. Be aware that most versions
of Gmsh available in the package repositories of your operating system still lack this functionality.
Further, Gmsh and the Gmsh reader of DUNE support second order boundary segments thus pro-
viding a rudimentary support for curved boundaries. To read such a file into a FooGrid, include
dune/grid/io/file/gmshreader.hh and write

FooGrid* grid = GmshReader <GridType >:: read(filename );

A second format is AmiraMesh, which is the native format of the Amira.2 To read AmiraMesh files
you need to have the library libamiramesh3 installed. Then

FooGrid* grid = AmiraMeshReader <GridType >:: read(filename );

reads the grid in filename into the FooGrid.
Further available formats are StarCD and the native Alberta format. See the class documentation of

dune-grid for an up-to-date list. Demo grids for each format can be found in dune-grid/doc/grids.
They exist for documentation and also as example grids for the unit tests of the file readers. The unit

1http://geuz.org/gmsh/
2http://www.amira.com/
3http://amira.com/downloads/patch-archive/patches412/81.html
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tests should not hardwire the path to the example grids. Instead, the path should be provided in the
preprocessor variable DUNE_GRID_EXAMPLE_GRIDS_PATH.

4.3 The DUNE Grid Format (DGF)

Dune has its own macro grid format, the Dune Grid Format. A detailed description of the DGF and
how to use it can be found on the homepage of DUNE4.
Here we only give a short introduction. Basically one can choose the grid manager during the make

process of your program: make GRIDTYPE=MYGRID GRIDDIM=d GRIDWORLD=w Including config.h will
then introduce the namespace GridSelector into the Dune namespace. This contains the typedef
GridType which is the type of the grid. Furthermore the required header files for the grid manager
are included. Through the module DUNE-grid the following grid managers can be used (for MYGROD
in the example above):
ALBERTAGRID,ALUGRID_CUBE,ALUGRID_SIMPLEX,ALUGRID_CONFORM,ONEDGRID,SGRID,UGGRID,
and YASPGRID.
The following example shows how an instance of the defined grid is generated. Given a DGF file, for
example unitcube2.dgf, a grid pointer is created as follows

Dune::GridPtr <Dune:: GridSelector ::GridType > gridPtr( "unitcube2.dgf" );

The grid is accessed by dereferencing the grid pointer.

GridType& grid = *gridPtr;

To change the grid one simply has to re-compile the code using the following make command.

make GRIDDIM =2 GRIDTYPE=ALBERTAGRID integration

This will compile the application integration with grid type ALBERTAGRID and grid dimension 2. Note
that before the re-compilation works, the corresponding object file has to be removed. If WORLDDIM is
not provide then WORLDDIM=GRIDDIM is assumed. To use some grid manager by default, i.e., without
providing the grid type during the make process, GRIDTYPE and GRIDDIM,WORLDDIM can be set in
Makefile.am. It is then still possible to change the default during the make process.

4.4 The Grid Factory

While there is currently no convention on what a file reader should look like, there is a formally
specified low-level interface for the construction of unstructured coarse grids. This interface, which
goes by the name of GridFactory, provides methods to, e. g. insert vertices and elements one by one.
It is the basis of the file readers described in the previous section. The main reason why you may want
to program the GridFactory directly is when writing your own grid readers. However, in some cases
it may also be most convenient to be able to specify your coarse grid entirely in the C++ code. You
can do that using the GridFactory.
The GridFactory is programmed as a factory class (hence the name). You default-construct an

object of the factory class, provide it with all necessary information, and it will create and hand over
a grid for you. In the following we will describe the use of the GridFactory in more detail. Say you
are interested in creating a new grid of type FooGrid. Then you proceed as follows:

4http://www.dune-project.org/doc/doxygen/html/classDune_1_1DuneGridFormatParser.html

23

http://www.dune-project.org/doc/doxygen/html/classDune_1_1DuneGridFormatParser.html


4 Constructing grid objects

1. Create a GridFactory Object

Get a new GridFactory object by calling

GridFactory< FooGrid > f a c t o r y ;

2. Enter the Vertices

Insert the grid vertices by calling

f a c t o r y . i n s e r tVe r t ex ( const Fie ldVector<ctype , dimworld>& po s i t i o n ) ;

for each vertex. The order of insertion determines the level- and leaf indices of your level 0
vertices.

3. Enter the elements

For each element call

f a c t o r y . inse r tE lement (Dune : : GeometryType type ,
const std : : vector<int>& v e r t i c e s ) ;

The parameters are

• type - The element type. The grid implementation is expected to throw an exception if an
element type that cannot be handled is encountered.

• vertices - The indices of the vertices of this element.

The numbering of the vertices of each element is expected to follow the DUNE conventions.
Refer to the page on reference elements for the details.

4. Parametrized Domains

FooGrid may support parametrized domains. That means that you can provide a smooth de-
scription of your grid boundary. The actual grid may always be piecewise linear; however, as
you refine, the grid will approach your prescribed boundary. You don’t have to do this. If you
do not specify the boundary geometry it is left to the grid implementation.

In order to create curved boundary segments, for each segment you have to write a class which
implements the correct geometry. These classes are then handed over to the factory. Boundary
segment implementations must be derived from

template <int dim , int dimworld> Dune : : BoundarySegment

This is an abstract base class which requires you to overload the method

virtual Fie ldVector< double , dimworld >
operator ( ) ( const Fie ldVector< double , dim−1 > &l o c a l )

This methods must compute the world coordinates from the local ones on the boundary segment.
Give these classes to your grid factory by calling

f a c t o r y . insertBoundarySegment ( const std : : vector<int>& ve r t i c e s ,
const BoundarySegment<dim , dimworld> ∗

boundarySegment = NULL) ;
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Control over the allocated objects is taken from you, and the grid object will take care of their
destruction.

Note that you can call insertBoundarySegment with only the first argument. In that case, the
boundary geometry is left to the grid implementation. However, the boundary segments get
ordered in the way you inserted them. This may be helpful if you have data attached to your
coarse grid boundary (see Sec. 4.5).

5. Finish construction

To finish off the construction of the FooGrid object call

FooGrid∗ g r id = fa c t o r y . c reateGr id ( ) ;

This time it is you who gets full responsibility for the allocated object.

4.5 Attaching Data to a New Grid

In many cases there is data attached to new grids. This data may be initial values, spatially distributed
material parameters, boundary conditions, etc. It is associated to elements or vertices, or the boundary
segments of the coarse grid. The data may be available in a separate data file or even included in the
same file with the grid.
The connection with the grid in the grid file is usually made implicitly. For example, vertex data is

ordered in the same order as the vertices itself. Hence the grid-reading process must guarantee that
vertices and elements are not reordered during grid creation. More specifically, DUNE guarantees the
following: the level and leaf indices of zero-level vertices and elements are defined by the order in which
they were inserted into the grid factory. Note that this does not mean that the vertices and elements
are traversed in this order by the Level- and LeafIterators. What matters are the indices. Note also
that no such promise is made concerning edges, faces and the like. Hence it is currently not possible
to read edge and face data along with a grid without some trickery.
It is also possible to attach data to boundary segments of the coarse grids. For this, the method

Intersection::boundaryId (which should really be called boundaryIndex) returns an index when
called for a boundary intersection. If the boundary intersection is on level zero the index is consecu-
tive and zero-starting. For all other boundary intersections it is the index of the zero-level ancestor
boundary segment of the intersection.
If you have a list of data associated to certain boundary segments of your coarse grid, you need

some control on how the boundary ids are set. Remember from Sec. 4.4 that you can create a grid
without mentioning the boundary at all. If you do that, the boundary ids are set automatically by
the grid implementation and the exact order is implementation-specific. If you set boundary segments
explicitly using the insertBoundarySegment method, then the boundary segments are numbered in
the order of their insertion. If you do not set all boundary segments the remaining ones get automatic,
implementation-specific ids. This is why the second argument of insertBoundarySegment is optional:
you may want to influence the ordering of the boundary segments, but leave the boundary geometry
to the grid implementation. Calling insertBoundarySegment with a single argument allows you to do
just this.
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4.6 Example: The UnitCube class

In this chapter we give example code that shows how the different available grid classes are instantiated.
We create grids for the unit cube Ω = (0, 1)d in various dimensions d.
Not all grid classes have the same interface for instantiation. Unstructured grids are created using

the GridFactory class, but for structured grids there is more variation. In order make the examples
in later chapters easier to write we want to have a class template UnitCube that we parametrize with
a type T and an integer parameter variant. T should be one of the available grid types and variant

can be used to generate different grids (e. g. triangular or quadrilateral) for the same type T. The
advantage of the UnitCube template is that the instantiation is hidden from the user.
The definition of the general template is as follows.

Listing 5 (File dune-grid-howto/unitcube.hh)

1 #ifndef UNITCUBE_HH

2 #define UNITCUBE_HH

3

4 #include <dune/common/exceptions.hh >

5 #include <dune/common/fvector.hh >

6 #include <dune/grid/utility/structuredgridfactory .hh >

7

8 // d e f a u l t implementation fo r any templa te parameter
9 template <typename T, int variant >

10 class UnitCube

11 {

12 public:

13 typedef T GridType;

14

15 static const int dim = GridType :: dimension;

16

17 // cons t ruc to r throwing excep t ion
18 UnitCube ()

19 {

20 Dune:: FieldVector <typename GridType ::ctype ,dim > lowerLeft (0);

21 Dune:: FieldVector <typename GridType ::ctype ,dim > upperRight (1);

22 Dune::array <unsigned int ,dim > elements;

23 std::fill(elements.begin (), elements.end(), 1);

24

25 switch (variant) {

26 case 1:

27 grid_ = Dune:: StructuredGridFactory <GridType >:: createCubeGrid(lowerLeft , upperRight ,

elements);

28 break;

29 case 2:

30 grid_ = Dune:: StructuredGridFactory <GridType >:: createSimplexGrid(lowerLeft , upperRight ,

elements);

31 break;

32 default:

33 DUNE_THROW( Dune:: NotImplemented , "Variant "

34 << variant << " of unit cube not implemented." );

35 }

36 }

37

38 T& grid ()

39 {

40 return *grid_;

41 }

42

43 private:
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44 // the cons t ruc t ed g r i d o b j e c t
45 Dune:: shared_ptr <T> grid_;

46 };

47

48

49 // inc lude s p e c i a l i z a t i o n s
50 #include"unitcube_sgrid.hh"

51 #include"unitcube_yaspgrid.hh"

52 #include"unitcube_albertagrid.hh"

53 #include"unitcube_alugrid.hh"

54

55 #endif

This is a default implementation that uses the utility class StructuredGridFactory (from the
header dune-grid/dune/grid/utility/structuredgridfactory.hh) to create grids for the unit
cube. The StructuredGridFactory uses the GridFactory class (Section 4.4) internally to create
structured simplicial and hexahedral grids. Depending on the template parameter variant, a hexa-
hedral (variant==1) or simplicial (variant==2) grid is created.
The GridFactory class is a required part of the grid interface for all unstructured grids. Hence the

default implementation of UnitCube should work for all unstructured grids, namely UGGrid, OneDGrid,
ALUGrid, and AlbertaGrid. The construction of structured grid objects is currently not standardized.
Therefore UnitCube is specialized for each structured grid type. We now look at each specialization
in turn.
For historic reasons, there are also specializations for ALUGrid and AlbertaGrid.

SGrid
The following listing creates an SGrid object. This class template also has a constructor without
arguments that results in a cube with a single element. SGrid supports all dimensions.

Listing 6 (File dune-grid-howto/unitcube sgrid.hh)

1 #ifndef UNITCUBE_SGRID_HH

2 #define UNITCUBE_SGRID_HH

3

4 #include "unitcube.hh"

5

6 #include <dune/grid/sgrid.hh >

7

8 // SGrid s p e c i a l i z a t i o n
9 template <int dim >

10 class UnitCube <Dune::SGrid <dim ,dim >,1>

11 {

12 public:

13 typedef Dune::SGrid <dim ,dim > GridType;

14

15 Dune::SGrid <dim ,dim >& grid ()

16 {

17 return grid_;

18 }

19

20 private:

21 Dune::SGrid <dim ,dim > grid_;

22 };

23

24 #endif
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YaspGrid
The following listing instantiates a YaspGrid object. The variant parameter specifies the number of
elements in each direction of the cube. In the parallel case all available processes are used and the
overlap is set to one element. Periodicity is not used.

Listing 7 (File dune-grid-howto/unitcube yaspgrid.hh)

1 #ifndef UNITCUBE_YASPGRID_HH

2 #define UNITCUBE_YASPGRID_HH

3

4 #include "unitcube.hh"

5

6 #include <dune/grid/yaspgrid.hh >

7

8 // YaspGrid s p e c i a l i z a t i o n
9 template <int dim , int size >

10 class UnitCube <Dune::YaspGrid <dim >,size >

11 {

12 public:

13 typedef Dune::YaspGrid <dim > GridType;

14

15 UnitCube () : Len (1.0), s(size), p(false),

16 #if HAVE_MPI

17 grid_(MPI_COMM_WORLD ,Len ,s,p,1)

18 #else

19 grid_(Len ,s,p,1)

20 #endif

21 { }

22

23 Dune::YaspGrid <dim >& grid ()

24 {

25 return grid_;

26 }

27

28 private:

29 Dune:: FieldVector <double ,dim > Len;

30 Dune:: FieldVector <int ,dim > s;

31 Dune:: FieldVector <bool ,dim > p;

32 Dune::YaspGrid <dim > grid_;

33 };

34

35 #endif

AlbertaGrid
The following listing contains specializations of the UnitCube template for Alberta in two and three
dimensions. When using Alberta versions less than 2.0 the DUNE framework has to be configured
with a dimension (--with-alberta-dim=2, --with-alberta-world-dim=2) and only this dimension
can then be used. The dimension from the configure run is available in the macro ALBERTA_DIM and
ALBERTA_WORLD_DIM in the file config.h (see next section). The variant parameter must be 1. The
grid factory concept is used by the base class BasicUnitCube.

Listing 8 (File dune-grid-howto/unitcube albertagrid.hh)

1 #ifndef UNITCUBE_ALBERTAGRID_HH

2 #define UNITCUBE_ALBERTAGRID_HH

3

4 #include "unitcube.hh"

5 #include "basicunitcube .hh"
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6

7 #if HAVE_ALBERTA

8 #include <dune/grid/albertagrid.hh >

9 #include <dune/grid/albertagrid/gridfactory.hh >

10

11 template < int dim >

12 class UnitCube < Dune:: AlbertaGrid < dim , dim >, 1 >

13 : public BasicUnitCube < dim >

14 {

15 public:

16 typedef Dune:: AlbertaGrid < dim , dim > GridType;

17

18 private:

19 GridType *grid_;

20

21 public:

22 UnitCube ()

23 {

24 Dune:: GridFactory < GridType > factory;

25 BasicUnitCube < dim >:: insertVertices( factory );

26 BasicUnitCube < dim >:: insertSimplices ( factory );

27 grid_ = factory.createGrid ();

28 }

29

30 ~UnitCube ()

31 {

32 Dune:: GridFactory < GridType >:: destroyGrid( grid_ );

33 }

34

35 GridType &grid ()

36 {

37 return *grid_;

38 }

39 };

40

41 #endif // #i f HAVEALBERTA
42

43 #endif

ALUGrid
The next listing shows the instantiation of ALUSimplexGrid or ALUCubeGrid objects. The ALU-
Grid implementation supports either simplicial grids, i.e. tetrahedral or triangular grids, and hexahe-
dral grids and the element type has to be chosen at compile-time. This is done by choosing either
ALUSimplexGrid or ALUCubeGrid. The variant parameter must be 1. As in the default implementa-
tion, grid objects are set up with help of the StructuredGridFactory class.

Listing 9 (File dune-grid-howto/unitcube alugrid.hh)

1 #ifndef UNITCUBE_ALUGRID_HH

2 #define UNITCUBE_ALUGRID_HH

3

4 #include "unitcube.hh"

5

6 #if HAVE_ALUGRID

7 #include <dune/grid/alugrid.hh >

8 #include <dune/grid/alugrid /3d/alu3dgridfactory.hh >

9

10 // ALU3dGrid and ALU2dGrid s implex s p e c i a l i z a t i o n .
11 // Note : e lement type determined by type
12 template <int dim >
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13 class UnitCube <Dune:: ALUSimplexGrid <dim ,dim >,1>

14 {

15 public:

16 typedef Dune:: ALUSimplexGrid <dim ,dim > GridType;

17

18 private:

19 Dune:: shared_ptr <GridType > grid_;

20

21 public:

22 UnitCube ()

23 {

24 Dune:: FieldVector <typename GridType ::ctype ,dim > lowerLeft (0);

25 Dune:: FieldVector <typename GridType ::ctype ,dim > upperRight (1);

26 Dune::array <unsigned int ,dim > elements;

27 std::fill(elements.begin (), elements.end(), 1);

28

29 grid_ = Dune:: StructuredGridFactory <GridType >:: createSimplexGrid (lowerLeft , upperRight ,

elements);

30 }

31

32 GridType &grid ()

33 {

34 return *grid_;

35 }

36 };

37

38 // ALU3dGrid hexahedra s p e c i a l i z a t i o n . Note : e lement type determined by type
39 template <>

40 class UnitCube <Dune:: ALUCubeGrid <3,3>,1>

41 {

42 public:

43 typedef Dune:: ALUCubeGrid <3,3> GridType;

44

45 private:

46 Dune:: shared_ptr <GridType > grid_;

47

48 public:

49 UnitCube ()

50 {

51 Dune:: FieldVector <GridType ::ctype ,3> lowerLeft (0);

52 Dune:: FieldVector <GridType ::ctype ,3> upperRight (1);

53 Dune::array <unsigned int ,3> elements = {1,1,1};

54

55 grid_ = Dune:: StructuredGridFactory <GridType >:: createCubeGrid(lowerLeft , upperRight ,

elements);

56 }

57

58 GridType &grid ()

59 {

60 return *grid_;

61 }

62 };

63 #endif

64

65 #endif
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5 Quadrature rules

In this chapter we explore how an integral

∫

Ω

f(x) dx

over some function f : Ω → R can be computed numerically using a DUNE grid object.

5.1 Numerical integration

Assume first the simpler task that ∆ is a reference element and that we want to compute the integral
over some function f̂ : ∆ → R over the reference element:

∫

∆

f̂(x̂) dx̂.

A quadrature rule is a formula that approximates integrals of functions over a reference element ∆.
In general it has the form

∫

∆

f̂(x̂) dx̂ =
n∑

i=1

f̂(ξi)wi + error.

The positions ξi and weight factors wi are dependent on the type of reference element and the number
of quadrature points n is related to the error.
Using the transformation formula for integrals we can now compute integrals over domains ω ⊆ Ω

that are mapped from a reference element, i. e. ω = {x ∈ Ω | x = g(x̂), x̂ ∈ ∆}, by some function
g : ∆ → Ω:

∫

Ω

f(x) =

∫

∆

f(g(x̂))µ(x̂) dx̂ =
n∑

i=1

f(g(ξi))µ(ξi)wi + error. (5.1)

Here µ(x̂) =
√

| det JT (x̂)J(x̂)| is the integration element and J(x̂) the Jacobian matrix of the map g.
The integral over the whole domain Ω requires a grid Ω =

⋃

k ωk. Using (5.1) on each element we
obtain finally

∫

Ω

f(x) dx =
∑

k

nk∑

i=1

f(gk(ξki ))µ
k(ξki )w

k
i +

∑

k

errork. (5.2)

Note that each element ωk may in principle have its own reference element which means that quadrature
points and weights as well as the transformation and integration element may depend on k. The total
error is a sum of the errors on the individual elements.
In the following we show how the formula (5.2) can be realised within DUNE.
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5.2 Functors

The function f is represented as a functor, i. e. a class having an operator() with appropriate
arguments. A point x ∈ Ω is represented by an object of type FieldVector<ct,dim> where ct is the
type for each component of the vector and dim is its dimension.

Listing 10 (dune-grid-howto/functors.hh) Here are some examples for functors.

1 #ifndef __DUNE_GRID_HOWTO_FUNCTORS_HH__

2 #define __DUNE_GRID_HOWTO_FUNCTORS_HH__

3

4 #include <dune/common/fvector.hh >

5 // a smooth func t i on
6 template <typename ct , int dim >

7 class Exp {

8 public:

9 Exp () {midpoint = 0.5;}

10 double operator () (const Dune:: FieldVector <ct ,dim >& x) const

11 {

12 Dune:: FieldVector <ct ,dim > y(x);

13 y -= midpoint;

14 return exp ( -3.234*(y*y));

15 }

16 private:

17 Dune:: FieldVector <ct ,dim > midpoint;

18 };

19

20 // a func t i on with a l o c a l f e a t u r e
21 template <typename ct , int dim >

22 class Needle {

23 public:

24 Needle ()

25 {

26 midpoint = 0.5;

27 midpoint[dim -1] = 1;

28 }

29 double operator () (const Dune:: FieldVector <ct ,dim >& x) const

30 {

31 Dune:: FieldVector <ct ,dim > y(x);

32 y -= midpoint;

33 return 1.0/(1E-4+y*y);

34 }

35 private:

36 Dune:: FieldVector <ct ,dim > midpoint;

37 };

38

39 #endif // DUNE GRID HOWTO FUNCTORS HH

5.3 Integration over a single element

The function integrateentity in the following listing computes the integral over a single element of
the mesh with a quadrature rule of given order. This relates directly to formula (5.1) above.

Listing 11 (dune-grid-howto/integrateentity.hh)

1 #ifndef DUNE_INTEGRATE_ENTITY_HH

2 #define DUNE_INTEGRATE_ENTITY_HH

3
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4 #include <dune/common/exceptions.hh >

5 #include <dune/geometry/quadraturerules .hh >

6

7 // ! compute i n t e g r a l o f func t i on over e n t i t y with g iven order
8 template <class Entity , class Function >

9 double integrateEntity (const Entity &entity , const Function &f, int p)

10 {

11 // dimension o f the e n t i t y
12 const int dim = Entity :: dimension;

13

14 // type used f o r coord ina te s in the g r i d
15 typedef typename Entity ::ctype ctype;

16

17 // ge t geometry
18 const typename Entity :: Geometry geometry = entity.geometry ();

19

20 // ge t geometry type
21 const Dune:: GeometryType gt = geometry.type ();

22

23 // ge t quadrature ru l e o f order p
24 const Dune:: QuadratureRule <ctype ,dim >&

25 rule = Dune:: QuadratureRules <ctype ,dim >:: rule(gt ,p);

26

27 // ensure t ha t ru l e has at l e a s t the reques t ed order
28 if (rule.order()<p)

29 DUNE_THROW(Dune::Exception ,"order not available");

30

31 // compute approximate i n t e g r a l
32 double result =0;

33 for (typename Dune:: QuadratureRule <ctype ,dim >:: const_iterator i=rule.begin ();

34 i!=rule.end(); ++i)

35 {

36 double fval = f(geometry.global(i->position ()));

37 double weight = i->weight ();

38 double detjac = geometry.integrationElement (i->position ());

39 result += fval * weight * detjac;

40 }

41

42 // re turn r e s u l t
43 return result;

44 }

45

46 #endif

Line 25 extracts a reference to a Dune::QuadratureRule from the Dune::QuadratureRules single-
ton which is a container containing quadrature rules for all the different reference element types and
different orders of approximation. Both classes are parametrized by dimension and the basic type used
for the coordinate positions. Dune::QuadratureRule in turn is a container of Dune::QuadraturePoint
supplying positions ξi and weights wi.
Line 33 shows the loop over all quadrature points in the quadrature rules. For each quadrature point

i the function value at the transformed position (line 36), the weight (line 37) and the integration
element (line 38) are computed and summed (line 39).

5.4 Integration with global error estimation

In the listing below function uniformintegration computes the integral over the whole domain via
formula (5.2) and in addition provides an estimate of the error. This is done as follows. Let Ic be the
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value of the numerically computed integral on some grid and let If be the value of the numerically
computed integral on a grid where each element has been refined. Then

E ≈ |If − Ic| (5.3)

is an estimate for the error. If the refinement is such that every element is bisected in every coordinate
direction, the function to be integrated is sufficiently smooth and the order of the quadrature rule is
p+ 1, then the error should be reduced by a factor of (1/2)p after each mesh refinement.

Listing 12 (dune-grid-howto/integration.cc)

1 // $Id : i n t e g r a t i on . cc 370 2012−02−10 16:08 :35Z mnolte $

2

3 // Dune inc l ude s
4 #include"config.h" // f i l e cons t ruc t ed by ./ con f i gure s c r i p t
5 #include <dune/grid/sgrid.hh > // load s g r i d d e f i n i t i o n
6 #include <dune/common/mpihelper.hh > // inc lude mpi he l p e r c l a s s
7

8 #include"functors.hh"

9 #include"integrateentity .hh"

10

11 // ! uniform ref inement t e s t
12 template <class Grid >

13 void uniformintegration (Grid& grid)

14 {

15 // func t i on to i n t e g r a t e
16 Exp <typename Grid::ctype ,Grid::dimension > f;

17

18 // ge t GridView on l e a f g r i d − type
19 typedef typename Grid :: LeafGridView GridView;

20

21 // ge t GridView ins tance
22 GridView gridView = grid.leafView ();

23

24 // ge t i t e r a t o r type
25 typedef typename GridView :: template Codim <0> :: Iterator LeafIterator;

26

27 // loop over g r i d sequence
28 double oldvalue =1E100;

29 for (int k=0; k<10; k++)

30 {

31 // compute i n t e g r a l wi th some order
32 double value = 0.0;

33 LeafIterator eendit = gridView.template end <0>();

34 for (LeafIterator it = gridView.template begin <0>(); it!= eendit; ++it)

35 value += integrateEntity (*it ,f,1);

36

37 // pr in t r e s u l t and error es t imate
38 std::cout << "elements="

39 << std::setw (8) << std:: right

40 << grid.size (0)

41 << " integral="

42 << std:: scientific << std:: setprecision (12)

43 << value

44 << " error=" << std::abs(value -oldvalue)

45 << std::endl;

46

47 // save va lue o f i n t e g r a l
48 oldvalue=value;

49

50 // r e f i n e a l l e lements
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51 grid.globalRefine (1);

52 }

53 }

54

55 int main(int argc , char **argv)

56 {

57 // i n i t i a l i z e MPI, f i n a l i z e i s done au toma t i ca l l y on e x i t
58 Dune:: MPIHelper :: instance(argc ,argv);

59

60 // s t a r t t r y / catch b l o c k to ge t error messages from dune
61 try {

62 using namespace Dune;

63

64 // the Gr idSe l ec tor : : GridType i s de f ined in g r i d t yp e . hh and i s
65 // s e t during compi la t ion
66 typedef GridSelector :: GridType Grid;

67

68 // use uni tcube from gr i d s
69 std:: stringstream dgfFileName;

70 dgfFileName << "grids/unitcube" << Grid :: dimension << ".dgf";

71

72 // crea t e g r i d po in t e r
73 GridPtr <Grid > gridPtr( dgfFileName.str() );

74

75 // i n t e g r a t e and compute error with e x t r a po l a t i on
76 uniformintegration ( *gridPtr );

77 }

78 catch (std:: exception & e) {

79 std::cout << "STL ERROR: " << e.what() << std::endl;

80 return 1;

81 }

82 catch (Dune:: Exception & e) {

83 std::cout << "DUNE ERROR: " << e.what() << std::endl;

84 return 1;

85 }

86 catch (...) {

87 std::cout << "Unknown ERROR" << std::endl;

88 return 1;

89 }

90

91 // done
92 return 0;

93 }

Running the executable integration on a YaspGrid in two space dimensions with a quadrature
rule of order two the following output is obtained:

elements= 1 integral =1.000000000000 e+00 error =1.000000000000 e+100

elements= 4 integral =6.674772311008e-01 error =3.325227688992e-01

elements= 16 integral =6.283027311366e-01 error =3.917449996419e-02

elements= 64 integral =6.192294777551e-01 error =9.073253381426e-03

elements= 256 integral =6.170056966109e-01 error =2.223781144285e-03

elements= 1024 integral =6.164524949226e-01 error =5.532016882082e-04

elements= 4096 integral =6.163143653145e-01 error =1.381296081435e-04

elements= 16384 integral =6.162798435779e-01 error =3.452173662133e-05

elements= 65536 integral =6.162712138101e-01 error =8.629767731416e-06

elements= 262144 integral =6.162690564098e-01 error =2.157400356695e-06

elements= 1048576 integral =6.162685170623e-01 error =5.393474630244e-07

elements= 4194304 integral =6.162683822257e-01 error =1.348366243104e-07

The ratio of the errors on two subsequent grids nicely approaches the value 1/4 as the grid is refined.

Exercise 5.1 Try different quadrature orders. For that just change the last argument of the call to
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integrateentity in line 35 in file integration.cc.

Exercise 5.2 Try different grid implementations and dimensions and compare the run-time.

Exercise 5.3 Try different integrands f and look at the development of the (estimated) error in the
integral.
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6 Attaching user data to a grid

In most useful applications there will be the need to associate user-defined data with certain entities
of a grid. The standard example are, of course, the degrees of freedom of a finite element function.
But it could be as simple as a boolean value that indicates whether an entity has already been visited
by some algorithm or not. In this chapter we will show with some examples how arbitrary user data
can be attached to a grid.

6.1 Mappers

The general situation is that a user wants to store some arbitrary data with a subset of the entities of
a grid. Remember that entities are all the vertices, edges, faces, elements, etc., on all the levels of a
grid.
An important design decision in the DUNE grid interface was that user-defined data is stored in

user space. This has a number of implications:

• DUNE grid objects do not need to know anything about the user data.

• Data structures used in the implementation of a DUNE grid do not have to be extensible.

• Types representing the user data can be arbitrary.

• The user is responsible for possibly reorganizing the data when a grid is modified (i. e. refined,
coarsened, load balanced).

Since efficiency is important in scientific computing the second important design decision was that
user data is stored in arrays (or random access containers) and that the data is accessed via an index.
The set of indices starts at zero and is consecutive.
Let us assume that the set of all entities in the grid is E and that E′ ⊆ E is the subset of entities

for which data is to be stored. E. g. this could be all the vertices in the leaf grid in the case of P1 finite
elements. Then the access from grid entities to user data is a two stage process: A so-called mapper
provides a map

m : E′ → IE′ (6.1)

where IE′ = {0, . . . , |E′|−1} ⊂ N is the consecutive and zero-starting index set associated to the entity
set. The user data D(E′) = {de | e ∈ E′} is stored in an array, which is another map

a : IE′ → D(E′). (6.2)

In order to get the data de ∈ D(E′) associated to entity e ∈ E′ we therefore have to evaluate the two
maps:

de = a(m(e)). (6.3)
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DUNE provides different implementations of mappers that differ in functionality and cost (with
respect to storage and run-time). Basically there are two different kinds of mappers.

Index based mappers
An index-based mapper is allocated for a grid and can be used as long as the grid is not changed
(i.e. refined, coarsened or load balanced). The implementation of these mappers is based on a
Dune::IndexSet and evaluation of the map m is typically of O(1) complexity with a very small
constant. Index-based mappers are only available for restricted (but usually sufficient) entity sets.
They will be used in the examples shown below.

Id based mappers
Id-based mappers can also be used while a grid changes, i.e. it is ensured that the map m can still be
evaluated for all entities e that are still in the grid after modification. For that it has to be implemented
on the basis of a Dune::IdSet. This may be relatively slow because the data type used for ids is usually
not an int and the non-consecutive ids require more complicated search data structures (typically a
map). Evaluation of the map m therefore typically costs O(log |E′|) . On the other hand, id-based
mappers are not restricted to specific entity sets E′.
In adaptive applications one would use an index-based mapper to do in the calculations on a certain

grid and only in the adaption phase an id-based mapper would be used to transfer the required data
(e. g. only the finite element solution) from one grid to the next grid.

6.2 Visualization of discrete functions

Let us use mappers to evaluate a function f : Ω → R for certain entities and store the values in a
vector. Then, in order to do something useful, we use the vector to produce a graphical visualization
of the function.
The first example evaluates the function at the centers of all elements of the leaf grid and stores this

value. Here is the listing:

Listing 13 (File dune-grid-howto/elementdata.hh)

1 #ifndef __DUNE_GRID_HOWTO_ELEMENT_DATA_HH

2 #define __DUNE_GRID_HOWTO_ELEMENT_DATA_HH

3

4 #include <dune/grid/common/mcmgmapper.hh >

5 #include <dune/grid/io/file/vtk/vtkwriter.hh >

6 #if HAVE_GRAPE

7 #include <dune/grid/io/visual/grapedatadisplay.hh >

8 #endif

9

10 // ! Parameter f o r mapper c l a s s
11 /∗∗ This c l a s s i s only here to show what such a c l a s s l ook s l i k e −− i t does
12 e x a c t l y the same as Dune : : MCMGElementLayout . ∗/
13 template <int dimgrid >

14 struct P0Layout

15 {

16 bool contains (Dune:: GeometryType gt)

17 {

18 if (gt.dim ()== dimgrid) return true;

19 return false;

20 }

21 };

22
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23 // demonstrate a t t a ch ing data to e lements
24 template <class G, class F>

25 void elementdata (const G& grid , const F& f)

26 {

27 // the usua l s t u f f
28 // const i n t dim = G: : dimension ;
29 const int dimworld = G:: dimensionworld;

30 typedef typename G:: ctype ct;

31 typedef typename G:: LeafGridView GridView;

32 typedef typename GridView :: template Codim <0>:: Iterator ElementLeafIterator ;

33 typedef typename ElementLeafIterator :: Entity :: Geometry LeafGeometry;

34

35 // ge t g r i d view on l e a f par t
36 GridView gridView = grid.leafView ();

37

38 // make a mapper f o r codim 0 e n t i t i e s in the l e a f g r i d
39 Dune:: LeafMultipleCodimMultipleGeomTypeMapper <G,P0Layout >

40 mapper(grid);

41

42 // a l l o c a t e a vec to r f o r the data
43 std::vector <double > c(mapper.size ());

44

45 // i t e r a t e through a l l e n t i t i e s o f codim 0 at the l e a v e s
46 for (ElementLeafIterator it = gridView.template begin <0>();

47 it!= gridView.template end <0>(); ++it)

48 {

49 // c e l l geometry
50 const LeafGeometry geo = it ->geometry ();

51

52 // ge t g l o b a l coord inate o f c e l l cen ter
53 Dune:: FieldVector <ct ,dimworld > global = geo.center ();

54

55 // eva lua t e func tor and s t o r e va lue
56 c[mapper.map(*it)] = f(global );

57 }

58

59 // generate a VTK f i l e
60 // Dune : : LeafP0Function<G, double> cc ( gr id , c ) ;
61 Dune::VTKWriter <typename G:: LeafGridView > vtkwriter(gridView );

62 vtkwriter.addCellData(c,"data");

63 vtkwriter.write("elementdata",Dune:: VTKOptions :: binaryappended );

64

65 // on l ine v i s u a l i z a t i o n with Grape
66 #if HAVE_GRAPE

67 {

68 const int polynomialOrder = 0; // we p i ecew i se cons tant data
69 const int dimRange = 1; // we have s ca l a r data here
70 // crea t e ins tance o f data d i s p l a y
71 Dune:: GrapeDataDisplay <G> grape(grid);

72 // d i s p l a y data
73 grape.displayVector ("concentration ", // name of data t ha t appears in grape
74 c, // data vec to r
75 gridView.indexSet(), // used index s e t
76 polynomialOrder , // polynomial order o f data
77 dimRange ); // dimRange o f data
78 }

79 #endif

80 }

81

82 #endif // DUNE GRID HOWTO ELEMENT DATA HH

The class template Dune::LeafMultipleCodimMultipleGeomTypeMapper provides an index-based
mapper where the entities in the subset E′ are all leaf entities and can further be selected depending
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on the codimension and the geometry type. To that end the second template argument has to be
a class template with one integer template parameter containing a method contains. Just look at
the example P0Layout. When the method contains returns true for a combination of dimension,
codimension and geometry type then all leaf entities with that dimension, codimension and geometry
type will be in the subset E′. The mapper object is constructed in line 40. A similar mapper is
available also for the entities of a grid level.
The data vector is allocated in line 43. Here we use a std::vector<double>. The size() method

of the mapper returns the number of entities in the set E′. Instead of the STL vector one can use any
other type with an operator[], even built-in arrays (however, built-in arrays will not work in this
example because the VTK output below requires a container with a size() method.
Now the loop in lines 46-57 iterates through all leaf elements. The next three statements within the

loop body compute the position of the center of the element in global coordinates. Then the essential
statement is in line 56 where the function is evaluated and the value is assigned to the corresponding
entry in the c array. The evaluation of the map m is performed by mapper.map(*it) where *it is
the entity which is passed as a const reference to the mapper.
The remaining lines of code produce graphical output. Lines 61-63 produce an output file for the

Visualization Toolkit (VTK), [7], in its XML format. If the grid is distributed over several processes the
Dune::VTKWriter produces one file per process and the corresponding XML metafile. Using Paraview,
[6], you can visualize these files. Lines 66-79 enable online interactive visualization with the Grape,
[5], graphics package, if it is installed on your machine.
The next list shows a function vertexdata that does the same job except that the data is associated

with the vertices of the grid.

Listing 14 (File dune-grid-howto/vertexdata.hh)

1 #ifndef __DUNE_GRID_HOWTO_VERTEXDATA_HH__

2 #define __DUNE_GRID_HOWTO_VERTEXDATA_HH__

3

4 #include <dune/grid/common/mcmgmapper.hh >

5 #include <dune/grid/io/file/vtk/vtkwriter.hh >

6 #if HAVE_GRAPE

7 #include <dune/grid/io/visual/grapedatadisplay.hh >

8 #endif

9

10 // ! Parameter f o r mapper c l a s s
11 /∗∗ This c l a s s i s only here to show what such a c l a s s l ook s l i k e −− i t does
12 e x a c t l y the same as Dune : : MCMGVertexLayout . ∗/
13 template <int dimgrid >

14 struct P1Layout

15 {

16 bool contains (Dune:: GeometryType gt)

17 {

18 if (gt.dim ()==0) return true;

19 return false;

20 }

21 };

22

23 // demonstrate a t t a ch ing data to e lements
24 template <class G, class F>

25 void vertexdata (const G& grid , const F& f)

26 {

27 // ge t dimension and coord inate type from Grid
28 const int dim = G:: dimension;

29 typedef typename G:: ctype ct;
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30 typedef typename G:: LeafGridView GridView;

31 // dertermine type o f Lea f I t e r a t o r f o r codimension = dimension
32 typedef typename GridView :: template Codim <dim >:: Iterator VertexLeafIterator ;

33

34 // ge t g r i d view on the l e a f par t
35 GridView gridView = grid.leafView ();

36

37 // make a mapper f o r codim 0 e n t i t i e s in the l e a f g r i d
38 Dune:: LeafMultipleCodimMultipleGeomTypeMapper <G,P1Layout >

39 mapper(grid);

40

41 // a l l o c a t e a vec to r f o r the data
42 std::vector <double > c(mapper.size ());

43

44 // i t e r a t e through a l l e n t i t i e s o f codim 0 at the l e a v e s
45 for (VertexLeafIterator it = gridView.template begin <dim >();

46 it!= gridView.template end <dim >(); ++it)

47 {

48 // eva lua t e func tor and s t o r e va lue
49 c[mapper.map(*it)] = f(it ->geometry (). corner (0));

50 }

51

52 // generate a VTK f i l e
53 // Dune : : LeafP1Function<G, double> cc ( gr id , c ) ;
54 Dune::VTKWriter <typename G:: LeafGridView > vtkwriter(grid.leafView ());

55 vtkwriter.addVertexData (c,"data");

56 vtkwriter.write("vertexdata",Dune:: VTKOptions :: binaryappended );

57

58 // on l ine v i s u a l i z a t i o n with Grape
59 #if HAVE_GRAPE

60 {

61 const int polynomialOrder = 1; // we p i ecew i se l i n e a r data
62 const int dimRange = 1; // we have s ca l a r data here
63 // crea t e ins tance o f data d i s p l a y
64 Dune:: GrapeDataDisplay <G> grape(grid);

65 // d i s p l a y data
66 grape.displayVector ("concentration ", // name of data t ha t appears in grape
67 c, // data vec to r
68 gridView.indexSet(), // used index s e t
69 polynomialOrder , // polynomial order o f data
70 dimRange ); // dimRange o f data
71 }

72 #endif

73 }

74 #endif // DUNE GRID HOWTO VERTEXDATA HH

The differences to the elementdata example are the following:

• In the P1Layout struct the method contains returns true if codim==dim.

• Use a leaf iterator for codimension dim instead of 0.

• Evaluate the function at the vertex position which is directly available via it->geometry()[0].

• Use addVertexData instead of addCellData on the Dune::VTKWriter.

• Pass polynomialOrder=1 instead of 0 as the second last argument of grape.displayVector.
This argument is the polynomial degree of the approximation.

Finally the following listing shows the main program that calls the two functions just discussed:
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Listing 15 (File dune-grid-howto/visualization.cc)

1 // $Id : v i s u a l i z a t i o n . cc 362 2011−09−16 13:54 :36Z robe r t k $

2

3 #include <config.h>

4 #include <iostream >

5 #include <iomanip >

6 #include <stdio.h>

7 #include <dune/common/mpihelper.hh > // inc lude mpi he l p e r c l a s s
8 #include <dune/grid/io/file/dgfparser/dgfparser.hh >

9

10

11 #include"elementdata.hh"

12 #include"vertexdata.hh"

13 #include"functors.hh"

14 #include"unitcube.hh"

15

16

17 #ifdef GRIDDIM

18 const int dimGrid = GRIDDIM;

19 #else

20 const int dimGrid = 2;

21 #endif

22

23

24 // ! supp ly func tor
25 template <class Grid >

26 void dowork ( Grid &grid , int refSteps = 5 )

27 {

28 // make func t i on o b j e c t
29 Exp <typename Grid::ctype ,Grid::dimension > f;

30

31 // r e f i n e the g r i d
32 grid.globalRefine( refSteps );

33

34 // c a l l the v i s u a l i z a t i o n func t i ons
35 elementdata(grid ,f);

36 vertexdata(grid ,f);

37 }

38

39 int main(int argc , char **argv)

40 {

41 // i n i t i a l i z e MPI, f i n a l i z e i s done au toma t i ca l l y on e x i t
42 Dune:: MPIHelper :: instance(argc ,argv);

43

44 // s t a r t t r y / catch b l o c k to ge t error messages from dune
45 try

46 {

47 if( argc > 1 )

48 {

49 typedef Dune:: GridSelector :: GridType DGFGridType;

50 // crea t e g r i d po in t e r
51 Dune :: GridPtr < DGFGridType > gridPtr( argv[ 1 ] );

52 dowork( *gridPtr , 3 );

53 }

54

55 /∗
56 UnitCube<Dune : : OneDGrid,1> uc0 ;
57 UnitCube<Dune : : YaspGrid<dimGrid>,1> uc1 ;
58

59 #i f HAVEUG
60 UnitCube< Dune : : UGGrid< dimGrid >, 2 > uc2 ;
61 dowork ( uc2 . g r i d ( ) , 3 ) ;
62 #end i f
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63

64 #i f HAVEALBERTA
65 {
66 UnitCube< Dune : : AlbertaGrid< dimGrid , dimGrid >, 1 > uni tcube ;
67 // note : The 3d cube cannot be b i s e c t e d r e c u r s i v e l y
68 dowork ( uni tcube . g r i d ( ) , ( dimGrid < 3 ? 6 : 0) ) ;
69 }
70 #end i f // #i f HAVEALBERTA
71 ∗/
72

73 UnitCube < Dune::SGrid < dimGrid , dimGrid >, 1 > uc4;

74 dowork( uc4.grid(), 3 );

75

76 #if HAVE_ALUGRID

77 UnitCube < Dune:: ALUSimplexGrid < dimGrid , dimGrid > , 1 > uc5;

78 dowork( uc5.grid(), 3 );

79

80 #if GRIDDIM == 3

81 UnitCube < Dune:: ALUCubeGrid < dimGrid , dimGrid > , 1 > uc6;

82 dowork( uc6.grid(), 3 );

83 #endif // #i f GRIDDIM == 3
84 #endif // #i f HAVE ALUGRID
85 }

86 catch (std:: exception & e) {

87 std::cout << "STL ERROR: " << e.what() << std::endl;

88 return 1;

89 }

90 catch (Dune:: Exception & e) {

91 std::cout << "DUNE ERROR: " << e.what() << std::endl;

92 return 1;

93 }

94 catch (...) {

95 std::cout << "Unknown ERROR" << std::endl;

96 return 1;

97 }

98

99 // done
100 return 0;

101 }

6.3 Cell centered finite volumes

In this section we show a first complete example for the numerical solution of a partial differential
equation (PDE), although a very simple one.
We will solve the linear hyperbolic PDE

∂c

∂t
+∇ · (uc) = 0 in Ω× T (6.4)

where Ω ⊂ R
d is a domain, T = (0, tend) is a time interval, c : Ω×T → R is the unknown concentration

and u : Ω × T → R
d is a given velocity field. We require that the velocity field is divergence free for

all times. The equation is subject to the initial condition

c(x, 0) = c0(x) x ∈ Ω (6.5)

and the boundary condition

c(x, t) = b(x, t) t > 0, x ∈ Γin(t) = {y ∈ ∂Ω | u(y, t) · ν(y) < 0}. (6.6)

Here ν(x) is the unit outer normal at a point y ∈ ∂Ω and Γin(t) is the inflow boundary at time t.
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6.3.1 Numerical Scheme

To keep the presentation simple we use a cell-centered finite volume discretization in space, full upwind
evaluation of the fluxes and an explicit Euler scheme in time.
The grid consists of cells (elements) ω and the time interval T is discretized into discrete steps

0 = t0, t1, . . . , tn, tn+1, . . . , tN = tend. Cell centered finite volume schemes integrate the PDE (6.4) over
a cell ωi and a time interval (tn, tn+1):

∫

ωi

tn+1∫

tn

∂c

∂t
dt dx+

∫

ωi

tn+1∫

tn

∇ · (uc) dt dx = 0 ∀i. (6.7)

Using integration by parts we arrive at

∫

ωi

c(x, tn+1) dx−

∫

ωi

c(x, tn) dx+

tn+1∫

tn

∫

∂ωi

cu · ν ds dt = 0 ∀i. (6.8)

Now we approximate c by a cell-wise constant function C, where Cn
i denotes the value in cell ωi at

time tn. Moreover we subdivide the boundary ∂ωi into facets γij which are either intersections with
other cells ∂ωi ∩ ∂ωj , or intersections with the boundary ∂ωi ∩ ∂Ω. Evaluation of the fluxes at time
level tn leads to the following equation for the unknown cell values at tn+1:

Cn+1
i |ωi| − Cn

i |ωi|+
∑

γij

φ(Cn
i , C

n
j , u

n
ij · νij ; γij , tn)|γij |∆tn = 0 ∀i, (6.9)

where ∆tn = tn+1 − tn, u
n
ij is the velocity on the facet γij at time tn, νij is the unit outer normal of

the facet γij and φ is the flux function defined as

φ(Cn
i , C

n
j , u

n
ij · νij ; γij , tn) =







b(γij)u
n
ij · νij γij ⊂ Γin(t)

Cn
j unij · νij γij = ∂ωi ∩ ∂ωj ∧ unij · νij < 0

Cn
i unij · νij unij · νij ≥ 0

. (6.10)

Here b(γij) denotes evaluation of the boundary condition on an inflow facet γij . If we formally set
Cn
j = b(γij) on an inflow facet γij ⊂ Γin(t) we can derive the following shorthand notation for the flux

function:
φ(Cn

i , C
n
j , u

n
ij · νij ; γij , tn) = Cn

i max(0, unij · νij)− Cn
j max(0,−unij · νij). (6.11)

Inserting this into (6.9) and solving for Cn+1
i we obtain

Cn+1
i = Cn

i



1−∆tn
∑

γij

|γij |

|ωi|
max(0, unij · νij)



+∆tn
∑

γij

Cn
j

|γij |

|ωi|
max(0,−unij · νij) ∀i. (6.12)

One can show that the scheme is stable provided the following condition holds:

∀i : 1−∆tn
∑

γij

|γij |

|ωi|
max(0, unij · νij) ≥ 0 ⇔ ∆tn ≤ min

i




∑

γij

|γij |

|ωi|
max(0, unij · νij)





−1

. (6.13)
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When we rewrite 6.12 in the form

Cn+1
i = Cn

i −∆tn
∑

γij

|γij |

|ωi|

(
Cn
i max(0, unij · νij) + Cn

j max(0,−unij · νij)
)

︸ ︷︷ ︸

δi

∀i (6.14)

then it becomes clear that the optimum time step ∆tn and the update δi for each cell can be computed
in a single iteration over the grid. The computation Cn+1 = Cn −∆tnδ can then be realized with a
simple vector update. In this form, the algorithm can also be parallelized in a straightforward way.

6.3.2 Implementation

First, we need to specify the problem parameters, i.e. initial condition, boundary condition and velocity
field. This is done by the following functions.

Listing 16 (File dune-grid-howto/transportproblem.hh)

1 #ifndef __DUNE_GRID_HOWTO_TRANSPORTPROBLEM_HH__

2 #define __DUNE_GRID_HOWTO_TRANSPORTPROBLEM_HH__

3

4 #include <dune/common/fvector.hh >

5 // the i n i t i a l cond i t i on c0
6 template <int dimworld , class ct >

7 double c0 (const Dune:: FieldVector <ct ,dimworld >& x)

8 {

9 Dune:: FieldVector <ct ,dimworld > y(0.25);

10 y -= x;

11 if (y.two_norm () <0.125)

12 return 1.0;

13 else

14 return 0.0;

15 }

16

17 // the boundary cond i t i on b on in f l ow boundary
18 template <int dimworld , class ct >

19 double b (const Dune:: FieldVector <ct ,dimworld >& x, double t)

20 {

21 return 0.0;

22 }

23

24 // the vec to r f i e l d u i s re turned in r
25 template <int dimworld , class ct >

26 Dune:: FieldVector <double ,dimworld > u (const Dune:: FieldVector <ct ,dimworld >& x, double t)

27 {

28 Dune:: FieldVector <double ,dimworld > r(0.5);

29 r[0] = 1.0;

30 return r;

31 }

32 #endif // DUNE GRID HOWTO TRANSPORTPROBLEM2 HH

The initialization of the concentration vector with the initial condition should also be straightforward
now. The function initialize works on a concentration vector c that can be stored in any container
type with a vector interface (operator[], size() and copy constructor are needed). Moreover the
grid and a mapper for element-wise data have to be passed as well.

Listing 17 (File dune-grid-howto/initialize.hh)
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1 #ifndef __DUNE_GRID_HOWTO_INITIALIZE_HH__

2 #define __DUNE_GRID_HOWTO_INITIALIZE_HH__

3

4 #include <dune/common/fvector.hh >

5

6 // ! i n i t i a l i z e the vec to r o f unknowns with i n i t i a l va lue
7 template <class G, class M, class V>

8 void initialize (const G& grid , const M& mapper , V& c)

9 {

10 // f i r s t we e x t r a c t the dimensions o f the g r i d
11 // const i n t dim = G: : dimension ;
12 const int dimworld = G:: dimensionworld;

13

14 // type used f o r coord ina te s in the g r i d
15 typedef typename G:: ctype ct;

16

17 // type o f g r i d view on l e a f par t
18 typedef typename G:: LeafGridView GridView;

19

20 // l e a f i t e r a t o r type
21 typedef typename GridView :: template Codim <0>:: Iterator LeafIterator;

22

23 // geometry type
24 typedef typename LeafIterator :: Entity :: Geometry Geometry;

25

26 // ge t g r i d view on l e a f par t
27 GridView gridView = grid.leafView ();

28

29 // i t e r a t e through l e a f g r i d an eva lua t e c0 at c e l l cen ter
30 LeafIterator endit = gridView.template end <0>();

31 for (LeafIterator it = gridView.template begin <0>(); it!=endit; ++it)

32 {

33 // ge t geometry
34 const Geometry geo = it ->geometry ();

35

36 // ge t g l o b a l coord inate o f c e l l cen ter
37 Dune:: FieldVector <ct ,dimworld > global = geo.center ();

38

39 // i n i t i a l i z e c e l l concentra t ion
40 c[mapper.map(*it)] = c0(global );

41 }

42 }

43

44 #endif // DUNE GRID HOWTO INITIALIZE HH

The main work is now done in the function which implements the evolution (6.14) with optimal
time step control via (6.13). In addition to grid, mapper and concentration vector the current time tn
is passed and the optimum time step ∆tn selected by the algorithm is returned.

Listing 18 (File dune-grid-howto/evolve.hh)

1 #ifndef __DUNE_GRID_HOWTO_EVOLVE_HH__

2 #define __DUNE_GRID_HOWTO_EVOLVE_HH__

3

4 #include <dune/common/fvector.hh >

5

6 template <class G, class M, class V>

7 void evolve (const G& grid , const M& mapper , V& c, double t, double& dt)

8 {

9 // f i r s t we e x t r a c t the dimensions o f the g r i d
10 const int dimworld = G:: dimensionworld;

11
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12 // type used f o r coord ina te s in the g r i d
13 typedef typename G:: ctype ct;

14

15 // type o f g r i d view on l e a f par t
16 typedef typename G:: LeafGridView GridView;

17

18 // element i t e r a t o r type
19 typedef typename GridView :: template Codim <0>:: Iterator LeafIterator;

20

21 // l e a f e n t i t y geometry
22 typedef typename LeafIterator :: Entity :: Geometry LeafGeometry;

23

24 // i n t e r s e c t i o n i t e r a t o r type
25 typedef typename GridView :: IntersectionIterator IntersectionIterator;

26

27 // i n t e r s e c t i o n geometry
28 typedef typename IntersectionIterator :: Intersection :: Geometry IntersectionGeometry;

29

30 // en t i t y po in t e r type
31 typedef typename G:: template Codim <0>:: EntityPointer EntityPointer ;

32

33 // ge t g r i d view on l e a f par t
34 GridView gridView = grid.leafView ();

35

36 // a l l o c a t e a temporary vec to r f o r the update
37 V update(c.size ());

38 for (typename V:: size_type i=0; i<c.size (); i++) update[i] = 0;

39

40 // i n i t i a l i z e dt very l a r g e
41 dt = 1E100;

42

43 // compute update vec to r and optimum dt in one g r i d t r a v e r s a l
44 LeafIterator endit = gridView.template end <0>();

45 for (LeafIterator it = gridView.template begin <0>(); it!=endit; ++it)

46 {

47 // c e l l geometry
48 const LeafGeometry geo = it ->geometry ();

49

50

51 // c e l l volume , assume l i n e a r map here
52 double volume = geo.volume ();

53

54 // c e l l index
55 int indexi = mapper.map(*it);

56

57 // v a r i a b l e to compute sum of p o s i t i v e f a c t o r s
58 double sumfactor = 0.0;

59

60 // run through a l l i n t e r s e c t i o n s with ne ighbors and boundary
61 IntersectionIterator isend = gridView.iend(*it);

62 for (IntersectionIterator is = gridView.ibegin (*it); is!= isend; ++is)

63 {

64 // ge t geometry type o f face
65 const IntersectionGeometry igeo = is ->geometry ();

66

67 // ge t normal vec to r s ca l ed with volume
68 Dune:: FieldVector <ct ,dimworld > integrationOuterNormal

69 = is ->centerUnitOuterNormal ();

70 integrationOuterNormal *= igeo.volume ();

71

72 // center o f face in g l o b a l coord ina te s
73 Dune:: FieldVector <ct ,dimworld > faceglobal = igeo.center ();

74
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75 // eva lua t e v e l o c i t y at face center
76 Dune:: FieldVector <double ,dimworld > velocity = u(faceglobal ,t);

77

78 // compute f a c t o r occur ing in f l u x formula
79 double factor = velocity*integrationOuterNormal /volume;

80

81 // fo r time s t ep c a l c u l a t i o n
82 if (factor >=0) sumfactor += factor;

83

84 // handle i n t e r i o r face
85 if (is ->neighbor ()) // ” cor r e c t ” ver s ion
86 {

87 // access ne ighbor
88 EntityPointer outside = is ->outside ();

89 int indexj = mapper.map(* outside );

90

91 // compute f l u x from one s i d e only
92 // t h i s shou ld become ea s i e r with the new I n t e r s e c t i o n I t e r a t o r f u n c t i o n a l i t y !
93 if ( it ->level()>outside ->level () ||

94 (it ->level ()== outside ->level () && indexi <indexj) )

95 {

96 // compute f a c t o r in neighbor
97 const LeafGeometry nbgeo = outside ->geometry ();

98 double nbvolume = nbgeo.volume ();

99 double nbfactor = velocity*integrationOuterNormal /nbvolume;

100

101 if (factor <0) // in f l ow
102 {

103 update[indexi] -= c[indexj ]* factor;

104 update[indexj] += c[indexj ]* nbfactor;

105 }

106 else // ou t f l ow
107 {

108 update[indexi] -= c[indexi ]* factor;

109 update[indexj] += c[indexi ]* nbfactor;

110 }

111 }

112 }

113

114 // handle boundary face
115 if (is ->boundary ())

116 {

117 if (factor <0) // in f low , app ly boundary cond i t i on
118 update[indexi] -= b(faceglobal ,t)* factor;

119 else // ou t f l ow
120 update[indexi] -= c[indexi ]* factor;

121 }

122 } // end a l l i n t e r s e c t i o n s
123

124 // compute dt r e s t r i c t i o n
125 dt = std::min(dt ,1.0/ sumfactor );

126

127 } // end gr i d t r a v e r s a l
128

129 // s c a l e dt wi th s a f e t y f a c t o r
130 dt *= 0.99;

131

132 // update the concentra t ion vec to r
133 for (unsigned int i=0; i<c.size (); ++i)

134 c[i] += dt*update[i];

135

136 return;

137 }
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ωi
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γij

γik
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level lωi

ωj
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ωm

Figure 6.1: Left: intersection with other elements and the boundary, right: intersections in the case of
locally refined grids.

138

139 #endif // DUNE GRID HOWTO EVOLVE HH

Lines 44-127 contain the loop over all leaf elements where the optimum ∆tn and the cell updates δi
are computed. The update vector is allocated in line 37, where we assume that V is a container with
copy constructor and size method.
The computation of the fluxes is done in lines 61-122. An IntersectionIterator is used to access

all intersections γij of a leaf element ωi. For a full documentation on the Intersection class, we
refer to the doxygen module page on Intersections1 An Intersection is with another element ωj if the
neighbor() method of the iterator returns true (line 85) or with the external boundary if boundary()
returns true (line 115), see also left part of Figure 6.1. An intersection γij is described by several map-
pings: (i) from a reference element of the intersection (with a dimension equal to the grid’s dimension
minus 1) to the reference elements of the two elements ωi and ωj and (ii) from a reference element of
the intersection to the global coordinate system (with the world dimension). If an intersection is with
another element then the outside() method returns an EntityPointer to an entity of codimension
0.
In the case of a locally refined grid special care has to be taken in the flux evaluation because the

intersection iterator is not symmetric. This is illustrated for a one-dimensional situation in the right
part of Figure 6.1. Element ωj is a leaf element on level l+ 1. The intersection iterator on ωj delivers
two intersections, one with ωi which is on level l and one with ωm which is also on level l+1. However,
the intersection iterator started on ωi will deliver an intersection with ωk and one with the external
boundary (which is not shown). This means that the correct flux for the intersection ∂ωi ∩ ∂ωj can
only be evaluated from the intersection γji visited by the intersection iterator started on ωj , because

1http://www.dune-project.org/doc/doxygen/html/classDune_1_1IntersectionIterator.html
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only there the two concentration values Cj and Ci are both accessibly. Note also that the outside
element delivered by an intersection iterator need not be a leaf element (such as ωk).
Therefore, in the code it is first checked that the outside element is actually a leaf element (line 89).

Then the flux can be evaluated if the level of the outside element is smaller than that of the element
where the intersection iterator was started (this corresponds the the situation of ωj referring to ωi in
the right part of Figure 6.1) or when the levels are equal and the index of the outside element is larger.
The latter condition with the indices just ensures that the flux is only computed once.
The ∆tn calculation is done in line 125 where the minimum over all cells is taken. Then, line 130

multiplies the optimum ∆tn with a safety factor to avoid any instability due to round-off errors.
Finally, line 134 computes the new concentration by adding the scaled update to the current con-

centration.
The function vtkout in the following listing provides an output of the grid and the solution using

the Visualization Toolkit’s [7] XML file format.

Listing 19 (File dune-grid-howto/vtkout.hh)

1 #ifndef __DUNE_GRID_HOWTO_VTKOUT_HH__

2 #define __DUNE_GRID_HOWTO_VTKOUT_HH__

3

4 #include <dune/grid/io/file/vtk/vtkwriter.hh >

5 #include <stdio.h>

6

7 template <class G, class V>

8 void vtkout (const G& grid , const V& c, const char* name , int k, double time =0.0, int rank =0)

9 {

10 Dune::VTKWriter <typename G:: LeafGridView > vtkwriter(grid.leafView ());

11 char fname [128];

12 char sername [128];

13 sprintf(fname ,"%s-%05d",name ,k);

14 sprintf(sername ,"%s.series",name);

15 vtkwriter.addCellData(c,"celldata");

16 vtkwriter.write(fname ,Dune:: VTKOptions :: ascii );

17

18 if ( rank == 0)

19 {

20 std:: ofstream serstream(sername , (k==0 ? std:: ios_base ::out : std:: ios_base ::app ));

21 serstream << k << " " << fname << ".vtu " << time << std::endl;

22 serstream.close ();

23 }

24 }

25

26 #endif // DUNE GRID HOWTO VTKOUT HH

In addition to the snapshots that are produced at each timestep, this function also generates a series
file which stores the actual time of an evolution scheme together with the snapshots’ filenames. After
executing the shell script writePVD on this series file, we get a Paraview Data (PVD) file with the
same name as the snapshots. This file opened with paraview then gives us a neat animation over the
time period.
Finally, the main program:

Listing 20 (File dune-grid-howto/finitevolume.cc)

1 #include"config.h" // know what g r i d s are present
2 #include <iostream > // fo r input / output to s h e l l
3 #include <fstream > // fo r input / output to f i l e s
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4 #include <vector > // STL vec to r c l a s s
5 #include <dune/grid/common/mcmgmapper.hh > // mapper c l a s s
6 #include <dune/common/mpihelper.hh > // inc lude mpi he l p e r c l a s s
7

8 #include"vtkout.hh"

9 #include"transportproblem2.hh"

10 #include"initialize.hh"

11 #include"evolve.hh"

12

13 //===============================================================
14 // the time loop func t i on working f o r a l l t ypes o f g r i d s
15 //===============================================================
16

17 template <class G>

18 void timeloop (const G& grid , double tend)

19 {

20 // make a mapper f o r codim 0 e n t i t i e s in the l e a f g r i d
21 Dune:: LeafMultipleCodimMultipleGeomTypeMapper <G,Dune:: MCMGElementLayout >

22 mapper(grid);

23

24 // a l l o c a t e a vec to r f o r the concentra t ion
25 std::vector <double > c(mapper.size ());

26

27 // i n i t i a l i z e concentra t ion with i n i t i a l va lue s
28 initialize(grid ,mapper ,c);

29 vtkout(grid ,c,"concentration " ,0,0.0);

30

31 // now do the time s t e p s
32 double t=0,dt;

33 int k=0;

34 const double saveInterval = 0.1;

35 double saveStep = 0.1;

36 int counter = 1;

37

38 while (t<tend)

39 {

40 // augment time s t ep counter
41 ++k;

42

43 // app ly f i n i t e volume scheme
44 evolve(grid ,mapper ,c,t,dt);

45

46 // augment time
47 t += dt;

48

49 // check i f data shou ld be wr i t t en
50 if (t >= saveStep)

51 {

52 // wr i t e data
53 vtkout(grid ,c,"concentration ",counter ,t);

54

55 // increase counter and saveStep f o r next i n t e r v a l
56 saveStep += saveInterval;

57 ++ counter;

58 }

59

60 // pr in t i n f o about time , t imes tep s i z e and counter
61 std::cout << "s=" << grid.size (0)

62 << " k=" << k << " t=" << t << " dt=" << dt << std::endl;

63 }

64

65 // output r e s u l t s
66 vtkout(grid ,c,"concentration ",counter ,tend);
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67 }

68

69 //===============================================================
70 // The main func t i on c r ea t e s o b j e c t s and does the time loop
71 //===============================================================
72

73 int main (int argc , char ** argv)

74 {

75 // i n i t i a l i z e MPI, f i n a l i z e i s done au toma t i ca l l y on e x i t
76 Dune:: MPIHelper :: instance(argc ,argv);

77

78 // s t a r t t r y / catch b l o c k to ge t error messages from dune
79 try {

80 using namespace Dune;

81

82 // the Gr idSe l ec tor : : GridType i s de f ined in g r i d t yp e . hh and i s
83 // s e t during compi la t ion
84 typedef GridSelector :: GridType Grid;

85

86 // use uni tcube from dg f g r i d s
87 std:: stringstream dgfFileName;

88 dgfFileName << "grids/unitcube" << Grid :: dimension << ".dgf";

89

90 // crea t e g r i d po in t e r
91 GridPtr <Grid > gridPtr( dgfFileName.str() );

92

93 // g r i d r e f e r ence
94 Grid& grid = *gridPtr;

95

96 // h a l f g r i d width 4 t imes
97 int level = 4 * DGFGridInfo <Grid >:: refineStepsForHalf ();

98

99 // r e f i n e g r i d u n t i l upper l im i t o f l e v e l
100 grid.globalRefine(level );

101

102 // do time loop u n t i l end time 0.5
103 timeloop(grid , 0.5);

104 }

105 catch (std:: exception & e) {

106 std::cout << "STL ERROR: " << e.what() << std::endl;

107 return 1;

108 }

109 catch (Dune:: Exception & e) {

110 std::cout << "DUNE ERROR: " << e.what() << std::endl;

111 return 1;

112 }

113 catch (...) {

114 std::cout << "Unknown ERROR" << std::endl;

115 return 1;

116 }

117

118 // done
119 return 0;

120 }

The function timeloop constructs a mapper and allocates the concentration vector with one entry
per element in the leaf grid. In line 28 this vector is initialized with the initial concentration and the
loop in line 38-63 evolves the concentration in time. Finally, the simulation result is written to a file
in line 66.
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6.4 A FEM example: The Poisson equation

In this section we will put together our knowledge about the DUNE grid interface acquired in previous
chapters to solve the Poisson equation with Dirichlet boundary conditions on the domain Ω = (0, 1)d:

−∆u = f in Ω (6.15)

u = 0 on ∂Ω (6.16)

The equation will be solved using P1-Finite-Elements on a simplicial grid. The implementation aims
to be easy to understand and yet show the power of the DUNE grid interface and its generic approach.
The starting point of the Finite Element Method is the variational formulation of 6.15, which is

obtained by partial integration:

∫

Ω

∇ u · ∇vdx

︸ ︷︷ ︸

=:a(u,v)

=

∫

Ω

fvdx

︸ ︷︷ ︸

=:ℓ(v)

v ∈ Vh (6.17)

Let now T be a conforming triangulation of the domain Ω with simplices:

(i)
⋃

∆∈T

∆ = Ω

(ii) ∆i ∩∆j i 6= j is an entity of higher codimension of the elements ∆i, ∆j

As we want to use linear finite elements we choose our test function space to be

Vh = {u ∈ C(Ω̄)
∣
∣
∣ u

∣
∣
∆
∈ P1(∆) ∀∆ ∈ T } (6.18)

We will not incorporate the Dirichlet boundary conditions into this function space. Instead, we will
implement them in an easier way as described later on.
As a basis φ1, ..., φN of Vh we choose the nodal basis - providing us small supports and thus a sparse

stiffness matrix. After transformation onto the reference element we can use the shape functions

N0(x) = 1−
d∑

i=1

xi (6.19)

Ni(x) = xi i = 1, ..., d (6.20)

to evaluate the basis functions and their gradients.
The numerical solution uh is a linear combination of φ1, ..., φN with coefficients u1, ..., uN . We

assemble the stiffness Matrix A and the vector b:

Aij = a(φi, φj) bi = ℓ(φi) (6.21)

The coefficients u1, ..., uN are then obtained by solving Au = b.
The integrals are transformed onto the reference element ∆̂ and computed with an appropriate

quadrature rule. Let the transformation map be given by g : ∆̂ → ∆
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Aij =

∫

Ω

∇φi · ∇φj dx (6.22)

=
∑

∆∈T

∫

∆

∇φi · ∇φj dx (6.23)

=
∑

∆∈T

∫

∆̂

∇φi(g(x̂)) · ∇φj(g(x̂))µ(x̂)dx̂ (6.24)

=
∑

∆∈T

∫

∆̂

(J−T
g ∇̂φ̂i)(x̂) · (J

−T
g ∇̂φ̂j)(x̂)µ(x̂)dx̂ (6.25)

Jg is the Jacobian of the map g and µ(x̂) :=
√

detJT
g Jg the Jacobian determinant. Let now ξk be

the quadrature points of the chosen rule and ωk the associated weights. We assume that there are p1
quadrature points to evaluate:

⇒ Aij =
∑

∆∈τ

p1∑

k=1

ωk(J
−T
g ∇̂φ̂i)(ξk) · (J

−T
g ∇̂φ̂j)(ξk)µ(ξk) (6.26)

Simultaneously, the right side b is treated in the same manner. As we might want to use another
quadrature rule here that better suits our function f , we use p2 quadrature points:

bi =
∑

∆∈τ

p2∑

k=1

ωkf(g(ξk))φi(g(ξk))µ(ξk) (6.27)

In our implementation we will of course not compute the matrix entries one after another but rather
iterate over all elements of the grid and update all matrix entries with a non-vanishing contribution
on that element.
After assembling the matrix we implement the Dirichlet boundary conditions by overwriting the

lines of the equation system associated with boundary nodes with trivial lines:

i ↓

→ i





⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 · · · 0 1 0 · · · 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆









⋆
ui
⋆



 =





⋆
0
⋆





Figure 6.2: Lines of A and b are replaced by trivial lines.

This is possible as—using the nodal basis—the coefficients match the value of the numerical solution
at the corresponding node.

6.4.1 Implementation

In this implementation we will restrict ourselves to a 2-dimensional grid. However, the code works on
simplicial grids of any dimension. Try this later!
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Lets first have a look at the implementation of the shape functions. This class only provides the
methods to evaluate the shape functions and their gradients:

Listing 21 (File dune-grid-howto/shapefunctions.hh)

1 #ifndef SHAPEFUNCTIONS_HH

2 #define SHAPEFUNCTIONS_HH

3

4 #include <dune/common/fvector.hh >

5

6 // LinearShapeFunction :
7 // rep re s en t s a shape func t i on and prov ide s methods to eva l ua t e the func t i on
8 // and i t s g rad i en t
9 template <class ctype , class rtype , int dim >

10 class LinearShapeFunction

11 {

12 public:

13 enum { dimension = dim };

14

15 LinearShapeFunction () : coeff0 (0.0), coeff1 (0.0) {}

16

17 LinearShapeFunction (rtype coeff0_ , const Dune:: FieldVector <rtype ,dim >& coeff1_)

18 : coeff0(coeff0_), coeff1(coeff1_) {}

19

20 void setCoeff(rtype coeff0_ , const Dune:: FieldVector <rtype ,dim >& coeff1_)

21 {

22 coeff0 = coeff0_;

23 coeff1 = coeff1_;

24 }

25

26 rtype evaluateFunction(const Dune:: FieldVector <ctype ,dim >& local) const

27 {

28 ctype result = coeff0;

29 for (int i = 0; i < dim; ++i)

30 result += coeff1[i] * local[i];

31 return result;

32 }

33

34 Dune:: FieldVector <rtype ,dim >

35 evaluateGradient(const Dune:: FieldVector <ctype ,dim >& local) const

36 {

37 return coeff1;

38 }

39

40 private:

41 rtype coeff0;

42 Dune:: FieldVector <rtype ,dim > coeff1;

43 };

44

45 // P1ShapeFunctionSet
46 // i n i t i a l i z e s one and only one s e t o f LinearShapeFunction
47 template <class ctype , class rtype , int dim >

48 class P1ShapeFunctionSet

49 {

50 public:

51 enum { n = dim + 1 };

52

53 typedef LinearShapeFunction <ctype ,rtype ,dim > ShapeFunction ;

54 typedef rtype resulttype;

55

56 // ge t the only ins tance o f t h i s c l a s s
57 static const P1ShapeFunctionSet & instance ()

58 {
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59 static const P1ShapeFunctionSet sfs;

60 return sfs;

61 }

62

63 const ShapeFunction & operator []( int i) const

64 {

65 if (!i)

66 return f0;

67 else

68 return f1[i - 1];

69 }

70

71 private:

72 // p r i v a t e cons t ruc to r preven t s a dd i t i o na l in s t ance s
73 P1ShapeFunctionSet ()

74 {

75 Dune:: FieldVector <rtype ,dim > e( -1.0);

76 f0.setCoeff (1.0, e);

77 for (int i = 0; i < dim; ++i)

78 {

79 Dune:: FieldVector <rtype ,dim > e(0.0);

80 e[i] = 1.0;

81 f1[i]. setCoeff (0.0, e);

82 }

83 }

84

85 P1ShapeFunctionSet (const P1ShapeFunctionSet & other)

86 {}

87

88 ShapeFunction f0;

89 ShapeFunction f1[dim];

90 };

91

92 #endif

And now the actual FEM code:

Listing 22 (File dune-grid-howto/finiteelements.cc)

1 #include "config.h"

2 #include <iostream >

3 #include <vector >

4 #include <set >

5 #include <dune/common/fvector.hh >

6 #include <dune/common/fmatrix.hh >

7 #include <dune/geometry/quadraturerules .hh >

8 #include <dune/grid/io/file/vtk/vtkwriter.hh >

9 #include <dune/grid/albertagrid.hh >

10

11 #if HAVE_DUNE_ISTL

12 #include <dune/istl/bvector.hh >

13 #include <dune/istl/bcrsmatrix.hh >

14 #include <dune/istl/ilu.hh >

15 #include <dune/istl/operators.hh >

16 #include <dune/istl/solvers.hh >

17 #include <dune/istl/preconditioners .hh >

18 #include <dune/istl/io.hh >

19 #else

20 #include <dune/common/dynvector.hh >

21 #include <dune/common/dynmatrix.hh >

22 #endif // HAVE DUNE ISTL
23

24 #include "shapefunctions.hh"
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25

26 // P1Elements :
27 // a P1 f i n i t e element d i s c r e t i z a t i o n fo r e l l i p t i c problems D i r i c h l e t
28 // boundary cond i t i ons on s imp l i c i a l conforming g r i d s
29 template <class GV , class F>

30 class P1Elements

31 {

32 public:

33 static const int dim = GV:: dimension;

34

35 typedef typename GV:: ctype ctype;

36 #if HAVE_DUNE_ISTL

37 typedef Dune::BCRSMatrix <Dune:: FieldMatrix <ctype ,1,1> > Matrix;

38 typedef Dune:: BlockVector <Dune:: FieldVector <ctype ,1> > ScalarField;

39 #else

40 typedef Dune:: DynamicMatrix <ctype > Matrix;

41 typedef Dune:: DynamicVector <ctype > ScalarField;

42 #endif // HAVE DUNE ISTL
43

44 private:

45 typedef typename GV:: template Codim <0>:: Iterator LeafIterator;

46 typedef typename GV:: IntersectionIterator IntersectionIterator;

47 typedef typename GV:: IndexSet LeafIndexSet;

48

49 const GV& gv;

50 const F& f;

51

52 public:

53 Matrix A;

54 ScalarField b;

55 ScalarField u;

56 std::vector < std::set <int > > adjacencyPattern;

57

58 P1Elements(const GV& gv_ , const F& f_) : gv(gv_), f(f_) {}

59

60 // s t o r e adjacency informat ion in a vec to r o f s e t s
61 void determineAdjacencyPattern ();

62

63 // assemble s t i f f n e s s matrix A and r i g h t s i d e b
64 void assemble ();

65

66 // f i n a l l y s o l v e Au = b fo r u
67 void solve ();

68 };

69

70 template <class GV , class F>

71 void P1Elements <GV , F>:: determineAdjacencyPattern ()

72 {

73 const int N = gv.size(dim);

74 adjacencyPattern.resize(N);

75

76 const LeafIndexSet& set = gv.indexSet ();

77 const LeafIterator itend = gv.template end <0>();

78

79 for (LeafIterator it = gv.template begin <0>(); it != itend; ++it)

80 {

81 Dune:: GeometryType gt = it ->type();

82 const Dune:: template GenericReferenceElement <ctype ,dim > &ref =

83 Dune:: GenericReferenceElements <ctype ,dim >:: general(gt);

84

85 // t r a v e r s e a l l codim−1−e n t i t i e s o f the current element and s t o r e a l l
86 // pa i r s o f v e r t i c e s in adjacencyPattern
87 const IntersectionIterator isend = gv.iend(*it);
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88 for (IntersectionIterator is = gv.ibegin (*it) ; is != isend ; ++is)

89 {

90 int vertexsize = ref.size(is ->indexInInside () ,1,dim);

91 for (int i=0; i < vertexsize; i++)

92 {

93 int indexi = set.subIndex (*it ,ref.subEntity(is ->indexInInside () ,1,i,dim),dim);

94 for (int j=0; j < vertexsize; j++)

95 {

96 int indexj = set.subIndex (*it ,ref.subEntity(is ->indexInInside () ,1,j,dim),

dim);

97 adjacencyPattern[indexi ]. insert(indexj);

98 }

99 }

100 }

101 }

102 }

103

104 template <class GV , class F>

105 void P1Elements <GV , F>:: assemble ()

106 {

107 const int N = gv.size(dim);

108

109 const LeafIndexSet& set = gv.indexSet ();

110 const LeafIterator itend = gv.template end <0>();

111

112 // s e t s i z e s o f A and b
113 #if HAVE_DUNE_ISTL

114 A.setSize(N, N, N + 2*gv.size(dim -1));

115 A.setBuildMode(Matrix :: random);

116 b.resize(N, false);

117

118 for (int i = 0; i < N; i++)

119 A.setrowsize(i,adjacencyPattern[i].size());

120 A.endrowsizes ();

121

122 // s e t s p a r s i t y pa t t e rn o f A with the informat ion gained in determineAdjacencyPattern
123 for (int i = 0; i < N; i++)

124 {

125 std:: template set <int >:: iterator setend = adjacencyPattern[i].end();

126 for (std:: template set <int >:: iterator setit = adjacencyPattern[i]. begin ();

127 setit != setend; ++ setit)

128 A.addindex(i,* setit);

129 }

130

131 A.endindices ();

132 #else

133 A.resize(N, N);

134 b.resize(N);

135 #endif // HAVE DUNE ISTL
136

137 // i n i t i a l i z e A and b
138 A = 0.0;

139 b = 0.0;

140

141 // ge t a s e t o f P1 shape func t i ons
142 const P1ShapeFunctionSet <ctype ,ctype ,dim >& basis = P1ShapeFunctionSet <ctype ,ctype ,dim >::

instance ();

143

144 for (LeafIterator it = gv.template begin <0>(); it != itend; ++it)

145 {

146 // determine geometry type o f the current element and ge t the matching re f e r ence
element

147 Dune:: GeometryType gt = it ->type();
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148 const Dune:: template GenericReferenceElement <ctype ,dim > &ref =

149 Dune:: GenericReferenceElements <ctype ,dim >:: general(gt);

150 int vertexsize = ref.size(dim);

151

152 // ge t a quadrature ru l e o f order one f o r the g iven geometry type
153 const Dune:: QuadratureRule <ctype ,dim >& rule = Dune:: QuadratureRules <ctype ,dim >:: rule(gt

,1);

154 for (typename Dune:: QuadratureRule <ctype ,dim >:: const_iterator r = rule.begin ();

155 r != rule.end() ; ++r)

156 {

157 // compute the jacob ian inve r s e transposed to transform the g rad i en t s
158 Dune:: FieldMatrix <ctype ,dim ,dim > jacInvTra =

159 it ->geometry ().jacobianInverseTransposed (r->position ());

160

161 // ge t the weight at the current quadrature po in t
162 ctype weight = r->weight ();

163

164 // compute Jacobian determinant f o r the trans format ion formula
165 ctype detjac = it ->geometry ().integrationElement (r->position ());

166 for (int i = 0; i < vertexsize; i++)

167 {

168 // compute transformed g rad i en t s
169 Dune:: FieldVector <ctype ,dim > grad1;

170 jacInvTra.mv(basis[i]. evaluateGradient(r->position ()),grad1);

171 for (int j = 0; j < vertexsize; j++)

172 {

173 Dune:: FieldVector <ctype ,dim > grad2;

174 jacInvTra.mv(basis[j]. evaluateGradient(r->position ()),grad2);

175

176 // gain g l o b a l i n i d i c e s o f v e r t i c e s i and j and update a s soc i a t ed matrix
entry

177 A[set.subIndex (*it ,i,dim)][set.subIndex (*it ,j,dim)]

178 += (grad1*grad2) * weight * detjac;

179 }

180 }

181 }

182

183 // ge t a quadrature ru l e o f order two fo r the g iven geometry type
184 const Dune:: QuadratureRule <ctype ,dim >& rule2 = Dune:: QuadratureRules <ctype ,dim >:: rule(

gt ,2);

185 for (typename Dune:: QuadratureRule <ctype ,dim >:: const_iterator r = rule2.begin ();

186 r != rule2.end() ; ++r)

187 {

188 ctype weight = r->weight ();

189 ctype detjac = it ->geometry ().integrationElement (r->position ());

190 for (int i = 0 ; i<vertexsize; i++)

191 {

192 // eva lua t e the in tegrand o f the r i g h t s i d e
193 ctype fval = basis[i]. evaluateFunction(r->position ())

194 * f(it ->geometry ().global(r->position ())) ;

195 b[set.subIndex (*it ,i,dim)] += fval * weight * detjac;

196 }

197 }

198 }

199

200 // D i r i c h l e t boundary cond i t i ons :
201 // rep l a ce l i n e s in A r e l a t e d to D i r i c h l e t v e r t i c e s by t r i v i a l l i n e s
202 for ( LeafIterator it = gv.template begin <0>() ; it != itend ; ++it)

203 {

204 const IntersectionIterator isend = gv.iend(*it);

205 for (IntersectionIterator is = gv.ibegin (*it) ; is != isend ; ++is)

206 {

207 // determine geometry type o f the current element and ge t the matching re f e r ence
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element
208 Dune:: GeometryType gt = it ->type();

209 const Dune:: template GenericReferenceElement <ctype ,dim > &ref =

210 Dune:: GenericReferenceElements <ctype ,dim >:: general(gt);

211

212 // check whether current i n t e r s e c t i o n i s on the boundary
213 if ( is ->boundary () )

214 {

215 // t r a v e r s e a l l v e r t i c e s the i n t e r s e c t i o n c on s i s t s o f
216 for (int i=0; i < ref.size(is ->indexInInside () ,1,dim); i++)

217 {

218 // and rep l a ce the a s soc i a t ed l i n e o f A and b with a t r i v i a l one
219 int indexi = set.subIndex (*it ,ref.subEntity(is ->indexInInside () ,1,i,dim),

dim);

220

221 A[indexi] = 0.0;

222 A[indexi ][ indexi] = 1.0;

223 b[indexi] = 0.0;

224 }

225 }

226 }

227 }

228 }

229

230 #if HAVE_DUNE_ISTL

231 template <class GV , class E>

232 void P1Elements <GV , E>:: solve ()

233 {

234 // make l i n e a r operator from A
235 Dune:: MatrixAdapter <Matrix ,ScalarField ,ScalarField > op(A);

236

237 // i n i t i a l i z e precond i t i oner
238 Dune::SeqILUn <Matrix ,ScalarField ,ScalarField > ilu1(A, 1, 0.92);

239

240 // the inve r s e operator
241 Dune:: BiCGSTABSolver <ScalarField > bcgs(op , ilu1 , 1e-15, 5000, 0);

242 Dune:: InverseOperatorResult r;

243

244 // i n i t i a l i z e u to some a r b i t r a r y va lue to avoid u be ing the exac t
245 // s o l u t i on
246 u.resize(b.N(), false);

247 u = 2.0;

248

249 // f i n a l l y s o l v e the system
250 bcgs.apply(u, b, r);

251 }

252 #endif // HAVE DUNE ISTL
253

254 // an example r i g h t hand s i d e func t i on
255 template <class ctype , int dim >

256 class Bump {

257 public:

258 ctype operator () (Dune:: FieldVector <ctype ,dim > x) const

259 {

260 ctype result = 0;

261 for (int i=0 ; i < dim ; i++)

262 result += 2.0 * x[i]* (1-x[i]);

263 return result;

264 }

265 };

266

267 int main(int argc , char ** argv)

268 {
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269 #if HAVE_ALBERTA && ALBERTA_DIM ==2

270 static const int dim = 2;

271 const char* gridfile = "grids /2 dgrid.al";

272

273 typedef Dune:: AlbertaGrid <dim ,dim > GridType;

274 typedef GridType :: LeafGridView GV;

275

276 typedef GridType :: ctype ctype;

277 typedef Bump <ctype ,dim > Func;

278

279 GridType grid(gridfile);

280 const GV& gv=grid.leafView ();

281

282 Func f;

283 P1Elements <GV ,Func > p1(gv , f);

284

285 #if HAVE_DUNE_ISTL

286 grid.globalRefine (16);

287 #else

288 grid.globalRefine (10);

289 #endif // HAVE DUNE ISTL
290

291 std::cout << "-----------------------------------" << "\n";

292 std::cout << "number of unknowns: " << grid.size(dim) << "\n";

293

294 std::cout << "determine adjacency pattern ..." << "\n";

295 p1.determineAdjacencyPattern ();

296

297 std::cout << "assembling ..." << "\n";

298 p1.assemble ();

299

300 #if HAVE_DUNE_ISTL

301 std::cout << "solving ..." << "\n";

302 p1.solve ();

303

304 std::cout << "visualizing ..." << "\n";

305 Dune::VTKWriter <GridType :: LeafGridView > vtkwriter(grid.leafView ());

306 vtkwriter.addVertexData (p1.u, "u");

307 vtkwriter.write("fem2d", Dune:: VTKOptions :: binaryappended);

308 #else

309 std::cout << "for solving and visualizing dune -istl is necessary." << "\n";

310 #endif // HAVE DUNE ISTL
311 #endif // HAVEALBERTA && ALBERTA DIM==2
312 }

The function determineAdjacencyPattern() in lines 70 to 102 does traverse the grid and stores all
adjacency information in a std::vector< std::set<int> >. You might wonder why this is necessary
before the actual computing of the matrix entries. The reason for this is that, as data structure for
the matrix A, we use BCRSMatrix - which is specialized to hold large sparse matrices. Using this type,
information about which entries do not vanish has to be known when assembling. We do give this
information to the matrix from line 123 on. Only after finishing this in line 131 we can start to fill the
matrix with values.
From line 144 to 198 we have the main loop traversing the whole grid and updating the matrix

entries. This does strictly follow the procedure described in previous chapters. The main calculation
is done in line 177 and 195 - which are one-to-one implementations of 6.26 and 6.27.
As already said above, we do directly implement Dirichlet boundaries into our matrix. This is done

in lines 202 to 227. We have to traverse the whole grid once again and check for each intersection of
elements whether it is on the boundary. In line 221 we overwrite the line corresponding to a node on
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Figure 6.3: Solution in 2D

the boundary as shown in figure 6.2.
When you visualize your results, you should get something like figure 6.3 or 6.4!

Exercise 6.1 Try a 3-dimensional grid! Just change the dimension in line 270 and the name of the
gridfile in line 271 to 3dgrid.al . You can compile the new code without reconfiguring by running

make ALBERTA_DIM =3

Exercise 6.2 Modify the code in order to make it handle Neumann boundary conditions too!
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Figure 6.4: Solution in 3D
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7 Adaptivity

7.1 Adaptive integration

7.1.1 Adaptive multigrid integration

In this section we describe briefly the adaptive multigrid integration algorithm presented in [4].

Global error estimation
The global error can be estimated by taking the difference of the numerically computed value for the
integral on a fine and a coarse grid as given in (5.3).

Local error estimation
Let Ipf (ω) and Iqf (ω) be two integration formulas of different orders p > q for the evaluation of the
integral over some function f on the element ω ⊆ Ω. If we assume that the higher order rule is locally
more accurate then

ǭ(ω) = |Ipf (ω)− Iqf (ω)| (7.1)

is an estimator for the local error on the element ω.

Refinement strategy
If the estimated global error is not below a user tolerance the grid is to be refined in those places where
the estimated local error is “high”. To be more specific, we want to achieve that each element in the
grid contributes about the same local error to the global error. Suppose we knew the maximum local
error on all the new elements that resulted from refining the current mesh (without actually doing
so). Then it would be a good idea to refine only those elements in the mesh where the local error is
not already below that maximum local error that will be attained anyway. In [4] it is shown that the
local error after mesh refinement can be effectively computed without actually doing the refinement.
Consider an element ω and its father element ω−, i. e. the refinement of ω− resulted in ω. Moreover,
assume that ω+ is a (virtual) element that would result from a refinement of ω. Then it can be shown
that under certain assumptions the quantity

ǫ+(ω) =
ǭ(ω)2

ǭ(ω−)
(7.2)

is an estimate for the local error on ω+, i. e. ǭ(ω+).
Another idea to determine the refinement threshold is to look simply at the maximum of the local

errors on the current mesh and to refine only those elements where the local error is above a certain
fraction of the maximum local error.
By combining the two approaches we get the threshold value κ actually used in the code:

κ = min

(

max
ω

ǫ+(ω),
1

2
max
ω

ǭ(ω)

)

. (7.3)
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Algorithm
The complete multigrid integration algorithm then reads as follows:

• Choose an initial grid.

• Repeat the following steps

– Compute the value I for the integral on the current grid.

– Compute the estimate E for the global error.

– If E < tol · I we are done.

– Compute the threshold κ as defined above.

– Refine all elements ω where ǭ(ω) ≥ κ.

7.1.2 Implementation of the algorithm

The algorithm above is realized in the following code.

Listing 23 (File dune-grid-howto/adaptiveintegration.cc)

1 // $Id : a dap t i v e i n t e g r a t i on . cc 370 2012−02−10 16:08 :35Z mnolte $

2

3 #include"config.h"

4 #include <iostream >

5 #include <iomanip >

6 #include <dune/grid/io/file/vtk/vtkwriter.hh > // VTK output rou t ine s
7 #include <dune/common/mpihelper.hh > // inc lude mpi he l p e r c l a s s
8

9 #include"unitcube.hh"

10 #include"functors.hh"

11 #include"integrateentity .hh"

12

13

14 // ! adap t i ve re f inement t e s t
15 template <class Grid , class Functor >

16 void adaptiveintegration (Grid& grid , const Functor& f)

17 {

18 // ge t g r i d view type f o r l e a f g r i d par t
19 typedef typename Grid:: LeafGridView GridView;

20 // ge t i t e r a t o r type
21 typedef typename GridView :: template Codim <0>:: Iterator ElementLeafIterator ;

22

23 // ge t g r i d view on l e a f par t
24 GridView gridView = grid.leafView ();

25

26 // a lgor i thm parameters
27 const double tol=1E-8;

28 const int loworder =1;

29 const int highorder =3;

30

31 // loop over g r i d sequence
32 double oldvalue =1E100;

33 for (int k=0; k <100; k++)

34 {

35 // compute i n t e g r a l on current mesh
36 double value =0;

37 for (ElementLeafIterator it = gridView.template begin <0>();

38 it!= gridView.template end <0>(); ++it)

39 value += integrateEntity (*it ,f,highorder );
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40

41 // pr in t r e s u l t
42 double estimated_error = std::abs(value -oldvalue );

43 oldvalue=value; // save va lue f o r next es t imate
44 std::cout << "elements="

45 << std::setw (8) << std:: right

46 << grid.size (0)

47 << " integral="

48 << std:: scientific << std:: setprecision (8)

49 << value

50 << " error=" << estimated_error

51 << std::endl;

52

53 // check convergence
54 if (estimated_error <= tol*value)

55 break;

56

57 // r e f i n e g r i d g l o b a l l y in f i r s t s t ep to ensure
58 // tha t every element has a f a t h e r
59 if (k==0)

60 {

61 grid.globalRefine (1);

62 continue;

63 }

64

65 // compute t h r e s ho l d f o r subsequent re f inement
66 double maxerror=-1E100;

67 double maxextrapolatederror =-1E100;

68 for (ElementLeafIterator it = grid.template leafbegin <0>();

69 it!=grid.template leafend <0>(); ++it)

70 {

71 // error on t h i s e n t i t y
72 double lowresult=integrateEntity (*it ,f,loworder );

73 double highresult=integrateEntity (*it ,f,highorder );

74 double error = std::abs(lowresult -highresult );

75

76 // max over whole g r i d
77 maxerror = std::max(maxerror ,error );

78

79 // error on f a t h e r e n t i t y
80 double fatherlowresult =integrateEntity (*(it ->father ()),f,loworder );

81 double fatherhighresult=integrateEntity (*(it ->father ()),f,highorder );

82 double fathererror = std::abs(fatherlowresult -fatherhighresult );

83

84 // l o c a l e x t r a po l a t i on
85 double extrapolatederror = error*error /( fathererror +1E-30);

86 maxextrapolatederror = std::max(maxextrapolatederror ,extrapolatederror );

87 }

88 double kappa = std::min(maxextrapolatederror ,0.5* maxerror );

89

90 // mark e lements f o r re f inement
91 for (ElementLeafIterator it = gridView.template begin <0>();

92 it!= gridView.template end <0>(); ++it)

93 {

94 double lowresult=integrateEntity (*it ,f,loworder );

95 double highresult=integrateEntity (*it ,f,highorder );

96 double error = std::abs(lowresult -highresult );

97 if (error >kappa) grid.mark(1,*it);

98 }

99

100 // adapt the mesh
101 grid.preAdapt ();

102 grid.adapt ();
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103 grid.postAdapt ();

104 }

105

106 // wr i t e g r i d in VTK format
107 Dune::VTKWriter <typename Grid:: LeafGridView > vtkwriter(gridView );

108 vtkwriter.write("adaptivegrid",Dune:: VTKOptions :: binaryappended );

109 }

110

111 // ! supp ly func tor
112 template <class Grid >

113 void dowork (Grid& grid)

114 {

115 adaptiveintegration (grid ,Needle <typename Grid::ctype ,Grid::dimension >());

116 }

117

118 int main(int argc , char **argv)

119 {

120 // i n i t i a l i z e MPI, f i n a l i z e i s done au toma t i ca l l y on e x i t
121 Dune:: MPIHelper :: instance(argc ,argv);

122

123 // s t a r t t r y / catch b l o c k to ge t error messages from dune
124 try {

125 using namespace Dune;

126

127 // the Gr idSe l ec tor : : GridType i s de f ined in g r i d t yp e . hh and i s
128 // s e t during compi la t ion
129 typedef GridSelector :: GridType Grid;

130

131 // use uni tcube from gr i d s
132 std:: stringstream dgfFileName;

133 dgfFileName << "grids/unitcube" << Grid :: dimension << ".dgf";

134

135 // crea t e g r i d po in t e r
136 GridPtr <Grid > gridPtr( dgfFileName.str() );

137

138 // do the adap t i ve i n t e g r a t i on
139 // NOTE: fo r s t ruc tu r ed g r i d s g l o b a l re f inement w i l l be used
140 dowork( *gridPtr );

141 }

142 catch (std:: exception & e) {

143 std::cout << "STL ERROR: " << e.what() << std::endl;

144 return 1;

145 }

146 catch (Dune:: Exception & e) {

147 std::cout << "DUNE ERROR: " << e.what() << std::endl;

148 return 1;

149 }

150 catch (...) {

151 std::cout << "Unknown ERROR" << std::endl;

152 return 1;

153 }

154

155 // done
156 return 0;

157 }

The work is done in the function adaptiveintegration. Lines 36-39 compute the value of the
integral on the current mesh. After printing the result the decision whether to continue or not is done
in line 54. The extrapolation strategy relies on the fact that every element has a father. To ensure
this, the grid is at least once refined globally in the first step (line 61). Now the refinement threshold
κ can be computed in lines 66-88. Finally the last loop in lines 91-98 marks elements for refinement
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Figure 7.1: Two and three-dimensional grids generated by the adaptive integration algorithm applied
to the needle pulse. Left grid is generated using Alberta, right grid is generated using UG.

and lines 101-103 actually do the refinement. The reason for dividing refinement into three functions
preAdapt(), adapt() and postAdapt() will be explained with the next example. Note the flexibility
of this algorithm: It runs in any space dimension on any kind of grid and different integration orders
can easily be incorporated. And that with just about 100 lines of code including comments.
Figure 7.1 shows two grids generated by the adaptive integration algorithm.

Warning 7.1 The quadrature rules for prisms and pyramids are currently only implemented for order
two. Therefore adaptive calculations with UGGrid and hexahedral elements do not work.

7.2 Adaptive cell centered finite volumes

In this section we extend the example of Section 6.3 by adaptive mesh refinement. This requires two
things: (i) a method to select cells for refinement or coarsening (derefinement) and (ii) the transfer
of a solution on a given grid to the adapted grid. The finite volume algorithm itself has already been
implemented for adaptively refined grids in Section 6.3.
For the adaptive refinement and coarsening we use a very simple heuristic strategy that works as

follows:

• Compute global maximum and minimum of element concentrations:

C = max
i

Ci, C = min
i

Ci.

• As the local indicator in cell ωi we define

ηi = max
γij

|Ci − Cj |.

68



7 Adaptivity

Here γij denotes intersections with other elements in the leaf grid.

• If for ωi we have ηi > tol · (C − C) and ωi has not been refined more than M times then mark
ωi and all its neighbors for refinement.

• Mark all elements ωi for coarsening where ηi < tol · (C −C) and ωi has been refined at least M
times.

This strategy refines an element if the local gradient is “large” and it coarsens elements (which
means it removes a previous refinement) if the local gradient is “small”. In addition any element is
refined at least refined M times and at most M times.
After mesh modification the solution from the previous grid must be transfered to the new mesh.

Thereby the following situations do occur for an element:

• The element is a leaf element in the new mesh and was a leaf element in the old mesh: keep the
value.

• The element is a leaf element in the new mesh and existed in the old mesh as a non-leaf element:
Compute the cell value as an average of the son elements in the old mesh.

• The element is a leaf element in the new mesh and is obtained through refining some element in
the old mesh: Copy the value from the element in the old mesh to the new mesh.

The complete mesh adaptation is done by the function finitevolumeadapt in the following listing:

Listing 24 (File dune-grid-howto/finitevolumeadapt.hh)

1 // −∗− tab−width : 4 ; indent−tabs−mode : n i l ; c−bas ic−o f f s e t : 2 −∗−
2 // v i : s e t e t t s=4 sw=2 s t s =2:
3 #ifndef __DUNE_GRID_HOWTO_FINITEVOLUMEADAPT_HH__

4 #define __DUNE_GRID_HOWTO_FINITEVOLUMEADAPT_HH__

5

6 #include <cmath >

7 #include <dune/grid/utility/persistentcontainer .hh >

8

9 struct RestrictedValue

10 {

11 double value;

12 int count;

13 RestrictedValue ()

14 {

15 value = 0;

16 count = 0;

17 }

18 };

19

20 template <class G, class M, class V>

21 bool finitevolumeadapt (G& grid , M& mapper , V& c, int lmin , int lmax , int k)

22 {

23 // t o l va lue f o r re f inement s t r a t e g y
24 const double refinetol = 0.05;

25 const double coarsentol = 0.001;

26

27 // type used f o r coord ina te s in the g r i d
28 typedef typename G:: ctype ct;

29

30 // g r i d view types
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31 typedef typename G:: LeafGridView LeafGridView;

32 typedef typename G:: LevelGridView LevelGridView ;

33

34 // i t e r a t o r types
35 typedef typename LeafGridView :: template Codim <0>:: Iterator LeafIterator;

36 typedef typename LevelGridView :: template Codim <0>:: Iterator LevelIterator ;

37

38 // en t i t y and en t i t y po in t e r
39 typedef typename G:: template Codim <0>:: Entity Entity;

40 typedef typename G:: template Codim <0>:: EntityPointer EntityPointer ;

41

42 // i n t e r s e c t i o n i t e r a t o r type
43 typedef typename LeafGridView :: IntersectionIterator LeafIntersectionIterator ;

44

45 // ge t g r i d view on l e a f g r i d
46 LeafGridView leafView = grid.leafView ();

47

48 // compute c e l l i n d i c a t o r s
49 V indicator(c.size(),-1E100);

50 double globalmax = -1E100;

51 double globalmin = 1E100;

52 for (LeafIterator it = leafView.template begin <0>();

53 it!= leafView.template end <0>(); ++it)

54 {

55 // my index
56 int indexi = mapper.map(*it);

57

58 // g l o b a l min/max
59 globalmax = std::max(globalmax ,c[indexi ]);

60 globalmin = std::min(globalmin ,c[indexi ]);

61

62 LeafIntersectionIterator isend = leafView.iend(*it);

63 for (LeafIntersectionIterator is = leafView.ibegin (*it); is!= isend; ++is)

64 {

65 const typename LeafIntersectionIterator :: Intersection &intersection = *is;

66 if( !intersection.neighbor () )

67 continue;

68

69 // access ne ighbor
70 const EntityPointer pOutside = intersection.outside ();

71 const Entity &outside = *pOutside;

72 int indexj = mapper.map( outside );

73

74 // handle face from one s i d e only
75 if ( it.level () > outside.level () ||

76 (it.level () == outside.level () && indexi <indexj) )

77 {

78 double localdelta = std::abs(c[indexj]-c[indexi ]);

79 indicator[indexi] = std::max(indicator[indexi],localdelta );

80 indicator[indexj] = std::max(indicator[indexj],localdelta );

81 }

82 }

83 }

84

85 // mark c e l l s f o r re f inement / coarsening
86 double globaldelta = globalmax -globalmin;

87 int marked =0;

88 for (LeafIterator it = leafView.template begin <0>();

89 it!= leafView.template end <0>(); ++it)

90 {

91 if (indicator[mapper.map(*it)]> refinetol*globaldelta

92 && (it.level()<lmax || !it ->isRegular ()))

93 {
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94 const Entity &entity = *it;

95 grid.mark( 1, entity );

96 ++ marked;

97 LeafIntersectionIterator isend = leafView.iend(entity );

98 for( LeafIntersectionIterator is = leafView.ibegin(entity ); is != isend; ++is )

99 {

100 const typename LeafIntersectionIterator :: Intersection &intersection = *is;

101 if( !intersection.neighbor () )

102 continue;

103

104 const EntityPointer pOutside = intersection.outside ();

105 const Entity &outside = *pOutside;

106 if( (outside.level () < lmax) || !outside.isRegular () )

107 grid.mark( 1, outside );

108 }

109 }

110 if (indicator[mapper.map(*it)]< coarsentol*globaldelta && it.level()>lmin)

111 {

112 grid.mark( -1, *it );

113 ++ marked;

114 }

115 }

116 if( marked ==0 )

117 return false;

118

119 grid.preAdapt ();

120

121 typedef Dune:: PersistentContainer <G,RestrictedValue > RestrictionMap;

122 RestrictionMap restrictionmap(grid ,0); // r e s t r i c t e d concentra t ion
123

124 for (int level=grid.maxLevel (); level >=0; level --)

125 {

126 // ge t g r i d view on l e v e l g r i d
127 LevelGridView levelView = grid.levelView(level );

128 for (LevelIterator it = levelView.template begin <0>();

129 it!= levelView.template end <0>(); ++it)

130 {

131 // ge t your map entry
132 RestrictedValue & rv = restrictionmap [*it];

133 // put your va lue in the map
134 if (it ->isLeaf ())

135 {

136 int indexi = mapper.map(*it);

137 rv.value = c[indexi ];

138 rv.count = 1;

139 }

140

141 // average in f a t h e r
142 if (it.level ()>0)

143 {

144 EntityPointer ep = it ->father ();

145 RestrictedValue & rvf = restrictionmap [*ep];

146 rvf.value += rv.value/rv.count;

147 rvf.count += 1;

148 }

149 }

150 }

151

152 // adapt mesh and mapper
153 bool rv=grid.adapt ();

154 mapper.update ();

155 restrictionmap.reserve ();

156 c.resize(mapper.size ());
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157

158 // i n t e r p o l a t e new c e l l s , r e s t r i c t coarsened c e l l s
159 for (int level =0; level <=grid.maxLevel (); level ++)

160 {

161 LevelGridView levelView = grid.levelView(level );

162 for (LevelIterator it = levelView.template begin <0>();

163 it!= levelView.template end <0>(); ++it)

164 {

165 // ge t your id
166

167 // check map entry
168 if (! it ->isNew () )

169 {

170 // entry i s in map, wr i t e in l e a f
171 if (it ->isLeaf ())

172 {

173 RestrictedValue & rv = restrictionmap [*it];

174 int indexi = mapper.map(*it);

175 c[indexi] = rv.value/rv.count;

176 }

177 }

178 else

179 {

180 // va lue i s not in map, i n t e r p o l a t e from fa t h e r element
181 assert (it.level ()>0);

182 EntityPointer ep = it ->father ();

183 RestrictedValue & rvf = restrictionmap [*ep];

184 if (it ->isLeaf ())

185 {

186 int indexi = mapper.map(*it);

187 c[indexi] = rvf.value/rvf.count;

188 }

189 else

190 {

191 // crea t e new entry
192 RestrictedValue & rv = restrictionmap [*it];

193 rv.value = rvf.value/rvf.count;

194 rv.count = 1;

195 }

196 }

197 }

198 }

199 grid.postAdapt ();

200

201 return rv;

202 }

203

204 #endif // DUNE GRID HOWTO FINITEVOLUMEADAPT HH

The loop in lines 52-83 computes the indicator values ηi as well as the global minimum and maximum
C,C. Then the next loop in lines 88-115 marks the elements for refinement. Lines 122-149 construct
a map that stores for each element in the mesh (on all levels) the average of the element values in the
leaf elements of the subtree of the given element. This is accomplished by descending from the fine
grid levels to the coarse grid levels and thereby adding the value in an element to the father element.
The key into the map is the global id of an element. Thus the value is accessible also after mesh
modification.
Now the grid can really be modified in line 153 by calling the adapt() method on the grid object.

The mapper is updated to reflect the changes in the grid in line 154 and the concentration vector is
resized to the new size in line 156. Then the values have to be interpolated to the new elements in the
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mesh using the map and finally to be transferred to the resized concentration vector. This is done in
the loop in lines 159-197.
Here is the new main program with an adapted timeloop:

Listing 25 (File dune-grid-howto/adativefinitevolume.cc)

1 #include "config.h" // know what g r i d s are present
2 #include <iostream > // fo r input / output to s h e l l
3 #include <fstream > // fo r input / output to f i l e s
4 #include <vector > // STL vec to r c l a s s
5

6 #include <dune/grid/common/mcmgmapper.hh > // mapper c l a s s
7 #include <dune/common/mpihelper.hh > // inc lude mpi he l p e r c l a s s
8

9 #include "vtkout.hh"

10 #include "transportproblem2 .hh"

11 #include "initialize.hh"

12 #include "evolve.hh"

13 #include "finitevolumeadapt .hh"

14

15 //===============================================================
16 // the time loop func t i on working f o r a l l t ypes o f g r i d s
17 //===============================================================
18

19 template <class G>

20 void timeloop (G& grid , double tend , int lmin , int lmax)

21 {

22 // make a mapper f o r codim 0 e n t i t i e s in the l e a f g r i d
23 Dune:: LeafMultipleCodimMultipleGeomTypeMapper <G,Dune:: MCMGElementLayout >

24 mapper(grid);

25

26 // a l l o c a t e a vec to r f o r the concentra t ion
27 std::vector <double > c(mapper.size ());

28

29 // i n i t i a l i z e concentra t ion with i n i t i a l va lue s
30 initialize(grid ,mapper ,c);

31 for (int i=grid.maxLevel (); i<lmax; i++)

32 {

33 if (grid.maxLevel ()>=lmax) break;

34 finitevolumeadapt (grid ,mapper ,c,lmin ,lmax ,0);

35 initialize(grid ,mapper ,c);

36 }

37

38 // wr i t e i n i t i a l data
39 vtkout(grid ,c,"concentration " ,0,0);

40

41 // v a r i a b l e s f o r time , t imes tep e t c .
42 double dt , t=0;

43 double saveStep = 0.1;

44 const double saveInterval = t + 0.1;

45 int counter = 1;

46 int k = 0;

47

48 std::cout << "s=" << grid.size (0) << " k=" << k << " t=" << t << std::endl;

49 while (t<tend)

50 {

51 // augment time s t ep counter
52 ++k;

53

54 // app ly f i n i t e volume scheme
55 evolve(grid ,mapper ,c,t,dt);

56

57 // augment time
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58 t += dt;

59

60 // check i f data shou ld be wr i t t en
61 if (t >= saveStep)

62 {

63 // wr i t e data
64 vtkout(grid ,c,"concentration ",counter ,t);

65

66 // increase counter and saveStep f o r next i n t e r v a l
67 saveStep += saveInterval;

68 ++ counter;

69 }

70

71 // pr in t i n f o about time , t imes tep s i z e and counter
72 std::cout << "s=" << grid.size (0)

73 << " k=" << k << " t=" << t << " dt=" << dt << std::endl;

74

75 // fo r uns t ruc tured g r i d s c a l l adapta t ion a lgor i thm
76 finitevolumeadapt (grid ,mapper ,c,lmin ,lmax ,k);

77 }

78

79 // wr i t e l a s t time s t ep
80 vtkout(grid ,c,"concentration ",counter ,tend);

81

82 // wr i t e
83 }

84

85 //===============================================================
86 // The main func t i on c r ea t e s o b j e c t s and does the time loop
87 //===============================================================
88

89 int main (int argc , char ** argv)

90 {

91 // i n i t i a l i z e MPI, f i n a l i z e i s done au toma t i ca l l y on e x i t
92 Dune:: MPIHelper :: instance(argc ,argv);

93

94 // s t a r t t r y / catch b l o c k to ge t error messages from dune
95 try {

96 using namespace Dune;

97

98 // the Gr idSe l ec tor : : GridType i s de f ined in g r i d t yp e . hh and i s
99 // s e t during compi la t ion

100 typedef GridSelector :: GridType Grid;

101

102 // use uni tcube from gr i d s
103 std:: stringstream dgfFileName;

104 dgfFileName << "grids/unitcube" << Grid :: dimension << ".dgf";

105

106 // crea t e g r i d po in t e r
107 GridPtr <Grid > gridPtr( dgfFileName.str() );

108

109 // g r i d r e f e r ence
110 Grid& grid = *gridPtr;

111

112 // minimal a l l owed l e v e l during re f inement
113 int minLevel = 2 * DGFGridInfo <Grid >:: refineStepsForHalf ();

114

115 // r e f i n e g r i d u n t i l upper l im i t o f l e v e l
116 grid.globalRefine(minLevel );

117

118 // maximal a l l owed l e v e l during re f inement
119 int maxLevel = minLevel + 3 * DGFGridInfo <Grid >:: refineStepsForHalf ();

120
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121 // do time loop u n t i l end time 0.5
122 timeloop(grid , 0.5, minLevel , maxLevel );

123 }

124 catch (std:: exception & e) {

125 std::cout << "STL ERROR: " << e.what() << std::endl;

126 return 1;

127 }

128 catch (Dune:: Exception & e) {

129 std::cout << "DUNE ERROR: " << e.what() << std::endl;

130 return 1;

131 }

132 catch (...) {

133 std::cout << "Unknown ERROR" << std::endl;

134 return 1;

135 }

136

137 // done
138 return 0;

139 }

The program works analogously to the non adaptive finitevolume version from the previous chap-
ter. The only differences are inside the timeloop function. During the initialization of the concen-
tration vector in line 34 and after each time step in line 76 the function finitevolumeadapt is called
in order to refine the grid. The initial adaptation is repeated M times. Note that adaptation af-
ter each time steps is deactivated during the compiler phase for unstructured grids with help of the
Capabilities class. This is because structured grids do not allow a conforming refinement and are
therefore unusable for adaptive schemes. In fact, the adapt method on a grid of YaspGrid e. g. results
in a global grid refinement.

Exercise 7.2 Compile the program with the gridtype set to ALUGRID_SIMPLEX and ALUGRID_CONFORM

and compare the results visually.
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8.1 DUNE Data Decomposition Model

The parallelization concept in DUNE follows the Single Program Multiple Data (SPMD) data parallel
programming paradigm. In this programming model each process executes the same code but on
different data. The parallel program is parametrized by the rank of the individual process in the set
and the number of processes P involved. The processes communicate by exchanging messages, but
you will rarely have the need to bother with sending messages.
A parallel DUNE grid, such as YaspGrid, is a collective object which means that all processes

participating in the computations on the grid instantiate the grid object at the same time (collectively).
Each process stores a subset of all the entities that the same program running on a single process would
have. An entity may be stored in more than one process, in principle it may be even stored in all
processes. An entity stored in more than one process is called a distributed entity. DUNE allows quite
general data decompositions but not arbitrary data decompositions. Each entity in a process has a
partition type value assigned to it. There are five different possible partition type values:

interior, border, overlap, front and ghost.

Entities of codimension 0 are restricted to the three partition types interior, overlap and ghost.
Entities of codimension greater than 0 may take all partition type values. The codimension 0 entities
with partition type interior form a non-overlapping decomposition of the entity set, i.e. for each entity
of codimension 0 there is exactly one process where this entity has partition type interior. Moreover,
the codimension 0 leaf entities in process number i form a subdomain Ωi ⊆ Ω and all the Ωi, 0 ≤ i < P ,
form a nonoverlapping decomposition of the computational domain Ω. The leaf entities of codimension
0 in a process i with partition types interior or overlap together form a subdomain Ω̂i ⊆ Ω.
Now the partition types of the entities in process i with codimension greater 0 can be determined

according to the following table:

Entity located in Partition Type value

Bi = ∂Ωi \ ∂Ω border

Ωi \Bi interior

Fi = ∂Ω̂i \ ∂Ω \Bi front

Ω̂i \ (Bi ∪ Fi) overlap
Rest ghost

The assignment of partition types is illustrated for three different examples in Figure 8.1. Each
example shows a two-dimensional structured grid with 6× 4 elements (in gray). The entities stored in
some process i are shown in color, where color indicates the partition type as explained in the caption.
The first row shows an example where process i has codimension 0 entities of all three partition types
interior, overlap and ghost (leftmost picture in first row). The corresponding assignment of partition
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c = 0

c = 0

c = 0

c = 1

c = 1

c = 1

c = 2

c = 2

c = 2

Figure 8.1: Color coded illustration of different data decompositions: interior (red), border (blue),
overlap (green), front (magenta) and ghost (yellow), gray encodes entites not stored by the
process. First row shows case with interior, overlap and ghost entities, second row shows
a case with interior and overlap without ghost and the last row shows a case with interior
and ghost only.
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types to entities of codimension 1 and 2 is then shown in the middle and right most picture. A grid
implementation can choose to omit the partition type overlap or ghost or both, but not interior. The
middle row shows an example where an interior partition is extended by an overlap and no ghost
elements are present. This is the model used in YaspGrid. The last row shows an example where
the interior partition is extended by one row of ghost cells. This is the model used in UGGrid and
ALUGrid.

8.2 Communication Interfaces

This section explains how the exchange of data between the partitions in different processes is organized
in a flexible and portable way.
The abstract situation is that data has to be sent from a copy of a distributed entity in a process

to one or more copies of the same entity in other processes. Usually data has to be sent not only for
one entity but for many entities at a time, thus it is more efficient pack all data that goes to the same
destination process into a single message. All entities for which data has to be sent or received form
a so-called communication interface. As an example let us define the set Xc

i,j as the set of all entities
of codimension c in process i with partition type interior or border that have a copy in process j with
any partition type. Then in the communication step process i will send one message to any other
process j when Xc

i,j 6= ∅. The message contains some data for every entity in Xc
i,j . Since all processes

participate in the communication step, process i will receive data from a process j whenever Xc
j,i 6= ∅.

This data corresponds to entities in process i that have a copy in Xc
j,i.

A DUNE grid offers a selection of predefined interfaces. The example above would use the parameter
InteriorBorder_All_Interface in the communication function. After the selection of the interface
it remains to specify the data to be sent per entity and how the data should be processed at the
receiving end. Since the data is in user space the user has to write a small class that encapsulates the
processing of the data at the sending and receiving end. The following listing shows an example for a
so-called data handle:

Listing 26 (File dune-grid-howto/parfvdatahandle.hh)

1 #ifndef __DUNE_GRID_HOWTO_PARFVDATAHANDLE_HH__

2 #define __DUNE_GRID_HOWTO_PARFVDATAHANDLE_HH__

3

4 #include <dune/grid/common/datahandleif.hh >

5

6 // A DataHandle c l a s s to exchange en t r i e s o f a vec to r
7 template <class M, class V> // mapper type and vec to r type
8 class VectorExchange

9 : public Dune:: CommDataHandleIF <VectorExchange <M,V>,

10 typename V:: value_type >

11 {

12 public:

13 // ! expor t type o f data f o r message b u f f e r
14 typedef typename V:: value_type DataType;

15

16 // ! re turns t rue i f data f o r t h i s codim shou ld be communicated
17 bool contains (int dim , int codim) const

18 {

19 return (codim ==0);

20 }

21

22 // ! re turns t rue i f s i z e per e n t i t y o f g iven dim and codim i s a cons tant
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23 bool fixedsize (int dim , int codim) const

24 {

25 return true;

26 }

27

28 /∗ ! how many o b j e c t s o f type DataType have to be sent f o r a g iven en t i t y
29

30 Note : Only the sender s i d e needs to know t h i s s i z e .
31 ∗/
32 template <class EntityType >

33 size_t size (EntityType& e) const

34 {

35 return 1;

36 }

37

38 // ! pack data from user to message b u f f e r
39 template <class MessageBuffer , class EntityType >

40 void gather (MessageBuffer & buff , const EntityType& e) const

41 {

42 buff.write(c[mapper.map(e)]);

43 }

44

45 /∗ ! unpack data from message b u f f e r to user
46

47 n i s the number o f o b j e c t s sent by the sender
48 ∗/
49 template <class MessageBuffer , class EntityType >

50 void scatter (MessageBuffer & buff , const EntityType& e, size_t n)

51 {

52 DataType x;

53 buff.read(x);

54 c[mapper.map(e)]=x;

55 }

56

57 // ! cons t ruc to r
58 VectorExchange (const M& mapper_ , V& c_)

59 : mapper(mapper_), c(c_)

60 {}

61

62 private:

63 const M& mapper;

64 V& c;

65 };

66

67 #endif // DUNE GRID HOWTO PARFVDATAHANDLE HH

Every instance of the VectorExchange class template conforms to the data handle concept. It
defines a type DataType which is the type of objects that are exchanged in the messages between the
processes. The method contains should return true for all codimensions that participate in the data
exchange. Method fixedsize should return true when, for the given codimension, the same number
of data items per entity is sent. If fixedsize returns false the method size is called for each entity
in order to ask for the number of items of type DataType that are to be sent for the given entity. Note
that this information has only to be given at the sender side. Then the method gather is called for
each entity in a communication interface on the sender side in order to pack the data for this entity
into the message buffer. The message buffer itself is realized as an output stream that accepts data of
type DataType. After exchanging the data via message passing the scatter method is called for each
entity at the receiving end. Here the data is read from the message buffer and stored in the user’s data
structures. The message buffer is realized as an input stream delivering items of type DataType. In
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the scatter method it is up to the user how the data is to be processed, e. g. one can simply overwrite
(as is done here), add or compute a maximum.

8.3 Parallel finite volume scheme

In this section we parallelize the (nonadaptive!) cell centered finite volume scheme. Essentially only
the evolve method has to be parallelized. The following listing shows the parallel version of this
method. Compare this with listing 18 on page 46.

Listing 27 (File dune-grid-howto/parevolve.hh)

1 #ifndef __DUNE_GRID_HOWTO_PAREVOLVE_HH__

2 #define __DUNE_GRID_HOWTO_PAREVOLVE_HH__

3

4 #include "parfvdatahandle .hh"

5

6 #include <dune/grid/common/gridenums.hh >

7 #include <dune/common/fvector.hh >

8

9 template <class G, class M, class V>

10 void parevolve (const G& grid , const M& mapper , V& c, double t, double& dt)

11 {

12 // check data p a r t i t i o n i n g
13 assert(grid.overlapSize (0)>0 || (grid.ghostSize (0) >0));

14

15 // f i r s t we e x t r a c t the dimensions o f the g r i d
16 const int dim = G:: dimension;

17 const int dimworld = G:: dimensionworld;

18

19 // type used f o r coord ina te s in the g r i d
20 typedef typename G:: ctype ct;

21

22 // type f o r g r i d view on l e a f par t
23 typedef typename G:: LeafGridView GridView;

24

25 // i t e r a t o r type
26 typedef typename GridView :: template Codim <0>::

27 template Partition <Dune:: All_Partition >:: Iterator LeafIterator;

28

29 // l e a f e n t i t y geometry
30 typedef typename LeafIterator :: Entity :: Geometry LeafGeometry;

31

32 // i n t e r s e c t i o n i t e r a t o r type
33 typedef typename GridView :: IntersectionIterator IntersectionIterator;

34

35 // type o f i n t e r s e c t i o n
36 typedef typename IntersectionIterator :: Intersection Intersection;

37

38 // i n t e r s e c t i o n geometry
39 typedef typename Intersection :: Geometry IntersectionGeometry;

40

41 // en t i t y po in t e r type
42 typedef typename G:: template Codim <0>:: EntityPointer EntityPointer ;

43

44 // a l l o c a t e a temporary vec to r f o r the update
45 V update(c.size ());

46 for (typename V:: size_type i=0; i<c.size (); i++) update[i] = 0;

47

48 // i n i t i a l i z e dt very l a r g e
49 dt = 1E100;
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50

51 // ge t g r i d view ins tance on l e a f g r i d
52 GridView gridView = grid.leafView ();

53

54 // compute update vec to r and optimum dt in one g r i d t r a v e r s a l
55 // i t e r a t e over a l l e n t i t i e s , but update i s only used on i n t e r i o r e n t i t i e s
56 LeafIterator endit = gridView.template end <0,Dune:: All_Partition >();

57 for (LeafIterator it = gridView.template begin <0,Dune:: All_Partition >(); it!= endit; ++it)

58 {

59 // c e l l geometry
60 const LeafGeometry geo = it ->geometry ();

61

62 // c e l l volume
63 double volume = geo.volume ();

64

65 // c e l l index
66 int indexi = mapper.map(*it);

67

68 // v a r i a b l e to compute sum of p o s i t i v e f a c t o r s
69 double sumfactor = 0.0;

70

71 // run through a l l i n t e r s e c t i o n s with ne ighbors and boundary
72 const IntersectionIterator isend = gridView.iend(*it);

73 for( IntersectionIterator is = gridView.ibegin (*it); is != isend; ++is )

74 {

75 const Intersection &intersection = *is;

76

77 // ge t geometry type o f face
78 const IntersectionGeometry igeo = intersection.geometry ();

79

80 // ge t normal vec to r s ca l ed with volume
81 Dune:: FieldVector < ct , dimworld > integrationOuterNormal

82 = intersection.centerUnitOuterNormal ();

83 integrationOuterNormal *= igeo.volume ();

84

85 // center o f face in g l o b a l coord ina te s
86 Dune:: FieldVector < ct , dimworld > faceglobal = igeo.center ();

87

88 // eva lua t e v e l o c i t y at face center
89 Dune:: FieldVector <double ,dim > velocity = u(faceglobal ,t);

90

91 // compute f a c t o r occur ing in f l u x formula
92 double factor = velocity*integrationOuterNormal /volume;

93

94 // fo r time s t ep c a l c u l a t i o n
95 if (factor >=0) sumfactor += factor;

96

97 // handle i n t e r i o r face
98 if( intersection.neighbor () )

99 {

100 // access ne ighbor
101 EntityPointer outside = intersection.outside ();

102 int indexj = mapper.map(* outside );

103

104 const int insideLevel = it ->level ();

105 const int outsideLevel = outside ->level ();

106

107 // handle face from one s i d e
108 if( (insideLevel > outsideLevel)

109 || (( insideLevel == outsideLevel) && (indexi < indexj )) )

110 {

111 // compute f a c t o r in neighbor
112 const LeafGeometry nbgeo = outside ->geometry ();
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113 double nbvolume = nbgeo.volume ();

114 double nbfactor = velocity*integrationOuterNormal /nbvolume;

115

116 if( factor < 0 ) // in f l ow
117 {

118 update[indexi] -= c[indexj ]* factor;

119 update[indexj] += c[indexj ]* nbfactor;

120 }

121 else // ou t f l ow
122 {

123 update[indexi] -= c[indexi ]* factor;

124 update[indexj] += c[indexi ]* nbfactor;

125 }

126 }

127 }

128

129 // handle boundary face
130 if( intersection.boundary () )

131 {

132 if( factor < 0 ) // in f low , app ly boundary cond i t i on
133 update[indexi] -= b(faceglobal ,t)* factor;

134 else // ou t f l ow
135 update[indexi] -= c[indexi ]* factor;

136 }

137 } // end a l l i n t e r s e c t i o n s
138

139 // compute dt r e s t r i c t i o n
140 if (it ->partitionType ()== Dune:: InteriorEntity)

141 dt = std::min(dt ,1.0/ sumfactor );

142

143 } // end gr i d t r a v e r s a l
144

145 // g l o b a l min over a l l p a r t i t i o n s
146 dt = grid.comm (). min(dt);

147 // s c a l e dt wi th s a f e t y f a c t o r
148 dt *= 0.99;

149

150 // exchange update
151 VectorExchange <M,V> dh(mapper ,update );

152 grid.template

153 communicate <VectorExchange <M,V> >(dh ,Dune:: InteriorBorder_All_Interface ,

154 Dune:: ForwardCommunication );

155

156 // update the concentra t ion vec to r
157 for (unsigned int i=0; i<c.size (); ++i)

158 c[i] += dt*update[i];

159

160 return;

161 }

162

163 #endif // DUNE GRID HOWTO PAREVOLVE HH

The first difference to the sequential version is in line 13 where it is checked that the grid provides
an overlap of at least one element. The overlap may be either of partition type overlap or ghost. The
finite volume scheme itself only computes the updates for the elements with partition type interior.
In order to iterate over entities with a specific partiton type the leaf and level iterators can be

parametrized by an additional argument PartitionIteratorType as shown in line 27. If the argument
All_Partition is given then all entities are processed, regardless of their partition type. This is also
the default behavior of the level and leaf iterators. If the partition iterator type is specified explicitely
in an iterator the same argument has also to be specified in the begin and end methods on the grid as
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shown in lines 56-57.
The next change is in line 140 where the computation of the optimum stable time step is restricted

to elements of partition type interior because only those elements have all neighboring elements locally
available. Next, the global minimum of the time steps sizes determined in each process is taken in line
146. For collective communication each grid returns a collective communication object with its comm()
method which allows to compute global minima and maxima, sums, broadcasts and other functions.
Finally the updates computed on the interior cells in each process have to be sent to all copies of the

respective entities in the other processes. This is done in lines 151-154 using the data handle described
above. The communicate method on the grid uses the data handle to assemble the message buffers,
exchanges the data and writes the data into the user’s data structures.
Finally, we need a new main program, which is in the following listing:

Listing 28 (File dune-grid-howto/parfinitevolume.cc)

1 #include"config.h" // know what g r i d s are present
2 #include <iostream > // fo r input / output to s h e l l
3 #include <fstream > // fo r input / output to f i l e s
4 #include <vector > // STL vec to r c l a s s
5 #include <dune/grid/common/mcmgmapper.hh > // mapper c l a s s
6 #include <dune/common/mpihelper.hh > // inc lude mpi he l p e r c l a s s
7

8

9 // checks f o r de f ined g r i d t yp e and in l cude s appropr ia t e dg f par s e r implementation
10 #include"vtkout.hh"

11 #include"unitcube.hh"

12 #include "transportproblem2 .hh"

13 #include"initialize.hh"

14 #include"parfvdatahandle .hh"

15 #include"parevolve.hh"

16

17

18 //===============================================================
19 // the time loop func t i on working f o r a l l t ypes o f g r i d s
20 //===============================================================
21

22 template <class G>

23 void partimeloop (const G& grid , double tend)

24 {

25 // make a mapper f o r codim 0 e n t i t i e s in the l e a f g r i d
26 Dune:: LeafMultipleCodimMultipleGeomTypeMapper <G,Dune:: MCMGElementLayout >

27 mapper(grid);

28

29 // a l l o c a t e a vec to r f o r the concentra t ion
30 std::vector <double > c(mapper.size ());

31

32 // i n i t i a l i z e concentra t ion with i n i t i a l va lue s
33 initialize(grid ,mapper ,c);

34 vtkout(grid ,c,"pconc" ,0,0.0,grid.comm (). rank ());

35

36 // now do the time s t e p s
37 double t=0,dt;

38 int k=0;

39 const double saveInterval = 0.1;

40 double saveStep = 0.1;

41 int counter = 1;

42 while (t<tend)

43 {

44 // augment time s t ep counter
45 k++;
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46

47 // app ly f i n i t e volume scheme
48 parevolve(grid ,mapper ,c,t,dt);

49

50 // augment time
51 t += dt;

52

53 // check i f data shou ld be wr i t t en
54 if (t >= saveStep)

55 {

56 // wr i t e data
57 vtkout(grid ,c,"pconc",counter ,t,grid.comm (). rank ());

58

59 // increase counter and saveStep f o r next i n t e r v a l
60 saveStep += saveInterval;

61 ++ counter;

62 }

63

64 // pr in t i n f o about time , t imes tep s i z e and counter
65 if (grid.comm (). rank ()==0)

66 std::cout << "k=" << k << " t=" << t << " dt=" << dt << std::endl;

67 }

68 vtkout(grid ,c,"pconc",counter ,tend ,grid.comm (). rank ());

69 }

70

71 //===============================================================
72 // The main func t i on c r ea t e s o b j e c t s and does the time loop
73 //===============================================================
74

75 int main (int argc , char ** argv)

76 {

77 // i n i t i a l i z e MPI, f i n a l i z e i s done au toma t i ca l l y on e x i t
78 Dune:: MPIHelper :: instance(argc ,argv);

79

80 // s t a r t t r y / catch b l o c k to ge t error messages from dune
81 try {

82 using namespace Dune;

83

84 UnitCube <YaspGrid <2>,64> uc;

85 uc.grid (). globalRefine (2);

86 partimeloop(uc.grid () ,0.5);

87

88 /∗ To use an a l t e r n a t i v e g r i d implementat ions f o r p a r a l l e l computations ,
89 uncomment e x a c t l y one d e f i n i t i o n o f uc2 and the l i n e below . ∗/
90 // #de f ine LOAD BALANCING
91

92 // UGGrid suppor t s p a r a l l e l i z a t i o n in 2 or 3 dimensions
93 #if HAVE_UG

94 // t ypede f UGGrid< 2 > GridType ;
95 // UnitCube< GridType , 2 > uc2 ;
96 #endif

97

98 // ALUGRID suppor t s p a r a l l e l i z a t i o n in 3 dimensions only
99 #if HAVE_ALUGRID

100 // t ypede f ALUCubeGrid< 3 , 3 > GridType ;
101 // t ypede f ALUSimplexGrid< 3 , 3 > GridType ;
102 // UnitCube< GridType , 1 > uc2 ;
103 #endif

104

105 #ifdef LOAD_BALANCING

106

107 // r e f i n e g r i d u n t i l upper l im i t o f l e v e l
108 uc2.grid (). globalRefine( 6 );
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109

110 // re−p a r t i t i o n g r i d f o r b e t t e r load ba lanc ing
111 uc2.grid (). loadBalance ();

112

113 // do time loop u n t i l end time 0.5
114 partimeloop(uc2.grid(), 0.5);

115 #endif

116

117 }

118 catch (std:: exception & e) {

119 std::cout << "STL ERROR: " << e.what() << std::endl;

120 return 1;

121 }

122 catch (Dune:: Exception & e) {

123 std::cout << "DUNE ERROR: " << e.what() << std::endl;

124 return 1;

125 }

126 catch (...) {

127 std::cout << "Unknown ERROR" << std::endl;

128 return 1;

129 }

130

131 // done
132 return 0;

133 }

A difference to the sequential program can be found in line 65 where the printing of the data of the
current time step is restricted to the process with rank 0. YaspGrid does not support dynamical load
balancing and therefore needs to start with a sufficiently fine grid that allows a reasonable partition
where each processes gets a non-empty part of grid. This is why we do not use DGF Files in the
parallel example and initialize the grid by the UnitCube class instead. For YaspGrid this allows an
easy selection of the grid’s initial coarseness through the second template argument of the UnitCube.
This argument should be chosen sufficiently high, because after each global refinement step the overlap
region grows and therefore the communicaton overhead increases.
If you want to use a grid with support for dynamical load balancing, uncomment one of the possible

definitions for such a grid in the code and define the macro LOAD_BALANCING. In this case in line 111
the method loadBalance is called on the grid. This method re-partitions the grid in a way such that
on every partition there is an equal amount of grid elements.
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Figure 8.2: Adaptive solution of an elliptic model problem with P1 conforming finite elements and
residual based error estimator. Illustrates that adaptive finite element algorithm can be
formulated independent of dimension, element type and refinement scheme. From top to
bottom, left to right: Alberta (bisection, 2d), UG (red/green on triangles), UG (red/-
green on quadrilaterals), Alberta (bisection, 3d), ALU (hanging nodes on tetrahedra),
ALU (hanging nodes on hexahedra), UG (red/green on tetrahedra), UG (red/green on
hexahedra, pyramids and tetrahedra), isosurfaces of solution.
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