
The DUNE Buildsystem HOWTO

Christian Engwer∗ Felix Albrecht†

March 1 2009

∗Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg,

Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany

†Institut für Numerische und Angewandte Mathematik, Westfälische Wilhelms-Universität Münster,

Einsteinstr. 62, D-48149 Münster, Germany

http://www.dune-project.org/

Contents

1 Getting started 2

2 Creating your own DUNE module 2

3 The Structure of DUNE 7

4 Building Single Modules Using the GNU AutoTools 8

4.1 Makefile.am . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2 Building Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 configure.ac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 dune-autogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 m4 files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Building Sets of Modules Using dunecontrol 15

6 Creating a new DUNE project 17

7 Dune module guidelines 18

8 Further documentation 18

1

http://www.dune-project.org/


1 Getting started

1 Getting started

TODO: How do I build the grid howto?

2 Creating your own DUNE module

This section tells you how to begin working with DUNE without explaining any further details. For a
closer look on duneproject, see section 6.

Once you have downloaded all the DUNE modules you are interested in, you probably wonder “How
do I start working with DUNE?” It is quite easy. Let us assume you have a terminal open and are inside
a directory containing some DUNE modules. Let us say

ls -l

produces something like:

dune -common/

dune -grid/

config.opts

There is no difference between a DUNE module you have downloaded from the web and modules
you created yourself. dunecontrol takes care of configuring your project and creating the correct
Makefiles (so you can easily link and use all the other DUNE modules). It can be done by calling

./dune -common/bin/duneproject

Note: In case you are using the unstable version DUNE you should be aware that the buildsystem
may change, just like the source code. Therefore it might be that duneproject is not up to date with
the latest changes.

After calling duneproject, you have to provide a name for your project (without whitespace), e.g.,
dune-foo. The prefix dune- is considered good practice, but it is not mandatory. You are then
asked to provide a list of all modules the new project should depend on (this will be something like
dune-common dune-grid, etc.). At last, you should provide the version of your project (e.g., 0.1) and
your email address. duneproject now creates your new project which is a folder with the name of
your project, containing some files needed in order to work with DUNE. In our example,

ls -l dune -foo/

should produce something like

configure.ac

dune.module

dune -foo.cc

Makefile.am

README

You can now call dunecontrol for your new project, as you would for any other DUNE mod-
ule. If you have a config.opts file configured to your needs (see e.g. the “Installation Notes”
on www.dune-project.org), a simple call of

./dune -common/bin/dunecontrol --module=dune -foo --opts=config.opts all

should call dune-autogen, configure and make for your project and all modules your project depends
on first.

2



2 Creating your own DUNE module

Remark 2.1 Always call dunecontrol from the directory containing dune-common.

You can now simply run

./dune -foo/dune -foo

which should produce something like

Hello World! This is dune -foo.

This is a sequential program.

If you want your DUNE module to be useable by other people your design should follow a certain
structure. A good way to indicate that your module is set up like the other DUNE modules is by naming
it with the prefix dune-. Since your module should be concerned with a certain topic, you should give
it a meaningful name (e.g. dune-grid is about grids).

Our next step is to create the subfolders doc/, foo/ and src/ in dune-foo/.
foo/ will contain any headers that are of interest to other users (like the subfolder common/ in
dune-common, grid/ in dune-grid, etc.). Other users will have to include those files if they want
to work with them. Let’s say we already have some interface implementation in a file bar.hh. We put
this one into the subfolder foo/.
It is then convenient to collect whatever documentation exists about those header files in doc/ and since
there should at least exist some doxygen documentation we create the subdirectory doc/doxygen/ (see
“Coding Style” in the setion “Developing Dune” on www.dune-project.org for details). We will need
a Makefile.am in doc/ and doc/doxygen/ so we copy the Makefile.am from dune-foo/Makefile.am

to dune-foo/doc/Makefile.am. Since we also need some other files for doxygen to work we just copy
the following files from e.g. dune-grid/doc/doxygen/ to dune-foo/doc/doxygen/:

Doxydep

Doxyfile

doxy -footer.html

doxy -header.wml

dune -doxy.css

mainpage

Makefile.am

modules

The src/ subdirectory will contain the sources of your implementation (usually at least one .cc

file with a main method). Since we already have such a file (dune foo.cc), we move it to src/.
We also need a Makefile.am in src/ so we copy our Makefile.am from dune-foo/Makefile.am to
dune-foo/src/Makefile.am.
Of course we will have to edit those copies later on. But let’s take a look at the structure of our project
now.

dune -foo/

-> configure.ac

-> doc/

-> doxygen/

-> Doxydep

-> Doxyfile

-> doxy -footer.html

-> doxy -header.wml

-> dune -doxy.css

-> mainpage

-> Makefile.am

-> modules

-> Makefile.am

-> dune.module

3



2 Creating your own DUNE module

-> foo/

-> bar.hh

-> Makefile.am

-> README

-> src/

-> dune_foo.cc

Now all that’s left to do is to edit those Makefile.ams, the configure.ac and some doxygen files.
First we open the file dune-foo/Makefile.am. Ignoring comments, you should edit the file as follows:

1 EXTRA_DIST=dune.module

2

3 DIST_SUBDIRS = doc src

4

5 if BUILD_DOCS

6 SUBDIRS = doc src

7 else

8 SUBDIRS = src

9 endif

10

11 AUTOMAKE_OPTIONS = foreign 1.5

12

13 DISTCHECK_CONFIGURE_FLAGS = --with -dune=$(DUNEROOT) CXX="$(CXX)" CC="$(CC)"

14

15 include $(top_srcdir )/am/global -rules

Lines 5− 9 state that there are two relevant subdirectories (in doc/ and src/) if your module is being
configured without the --disable-documentation flag or just in src/ otherwise. Line 13 might look
different on your machine, and you should use the line from the original Makefile.am in that case.
We can leave dune-foo/src/Makefile.am nearly as it is, only the line

EXTRA_DIST=dune.module

should be removed.

Now we have to tell dune-autogen something about the structure of our project. This can easily
be done by opening dune-foo/configure.ac and editing just two lines.
Since we moved dune foo.cc into src/ we have to tell configure where it is now. Therefore we
change the line

AC_CONFIG_SRCDIR ([ dune_foo.cc])

to

AC_CONFIG_SRCDIR ([src/dune_foo.cc])

Also we have to tell configure about all the Makefiles we need created. We do this by editing the
line

AC_CONFIG_FILES ([ Makefile ])

For our example, we replace the above line with the following:

AC_CONFIG_FILES ([ Makefile

src/Makefile

doc/Makefile

doc/doxygen/Makefile ])

Now your module is nearly ready to being configured by dunecontrol. Only the doxygen part is
missing (in fact, configuring it with the --disable-documentation flag would work from this point

4



2 Creating your own DUNE module

on).

To configure doxygen we have to edit two Makefile.ams and some doxygen files. The first Makefile.am
to edit is of course dune-foo/doc/Makefile.am. Ignoring comments again, the file should look like:

1 SUBDIRS = doxygen

2

3 all: $(PAGES)

4

5 CURDIR=doc

6

7 BASEDIR =..

8

9 docdir=$(datadir )/doc/dune -foo

10

11 include $(top_srcdir )/am/webstuff

12

13 CLEANFILES = $(PAGES)

14

15 if ! BUILD_DOCS

16 dist -hook:

17 echo "# No documentation  included in distribution! " > $(distdir )/$(DOCUMENTATION_TAG_FILE )

18 endif

19

20 include $(top_srcdir )/am/global -rules

Now we can take a look at Makefile.am in dune-foo/doc/doxygen/. Since this one was copied
from dune-grid it should suffice to change all occurrences of grid into foo. In DUNE release 1.2 this
should be just the lines

doxygendir = $(datadir )/doc/dune -grid/doxygen

and

EXTRAINSTALL="$(DOXYGENINSTALL)" CURDIR="$(CURDIR )/dune -grid -html" install ; \

which have to be changed to

doxygendir = $(datadir )/doc/dune -foo/doxygen

and

EXTRAINSTALL="$(DOXYGENINSTALL)" CURDIR="$(CURDIR )/dune -foo -html" install ; \

respectively.
Now dunecontrol is ready to take care of building the documentation. But since we copied some
doxygen stuff from dune-grid there are some doxygen files left we have to take care of. These are
Doxyfile, mainpage and modules. You can edit the latter two as you like. They will form the main
page and the module page of the html documentation of doxygen.
We are basically left to change all occurrences of grid in the Doxyfile as well as some settings. If
you open the file dune-foo/doc/doxygen/Doxyfile the first thing you should see is a line like

PROJECT_NAME = dune -grid

which should obviously be changed into

PROJECT_NAME = dune -foo

to state the name of your module.
The next thing we’re interested in are the lines

5



2 Creating your own DUNE module

INPUT = mainpage \

modules \

../../ grid/modules \

../../ grid

which should of course look like

INPUT = mainpage \

modules \

../../ foo

Then there are some settings of dune-grid left which we probably don’t want to have. So we just
comment all the following lines by just adding a # at the beginning of every line.

EXCLUDE = ../../ grid/onedgrid \

../../ grid/uggrid \

../../ grid/test

EXAMPLE_PATH = ../../ grid/io/file/dgfparser/test

IMAGE_PATH = ../../ grid/sgrid \

../../ grid/yaspgrid \

../../ grid/common \

../../ grid/io/file/dgfparser/test \

../ appl/refelements \

../ refinement

Now we are done editing files and ready to configure the module without the option
--disable-documentation (provided you have doxygen and the necessary tools installed on your
system).
After running

./dune -common/bin/dunecontrol --module=foo --opts=config.opts all

with a config.opts that enables documentation you should now find a html doxygen documentation
in dune-foo/doc/doxygen/html/index.html.

If you take a look at the DUNE core modules you will find a symlink

dune -> .

in each main folder. Its purpose is to allow inclusion directives like

#include <dune/foo/bar.hh >

If you want header files from your module to be includable from other modules you should have this
link. You can set it manually by goint to your module directory dune-foo/ and typing

ln -s . dune

You can also let configure do this for you automatically if you include this line

DUNE_SYMLINK

in your configure.ac file.

Remark 2.2 This mechanism is under discussion and may change in a future version of DUNE.

6



3 The Structure of DUNE

3 The Structure of DUNE

DUNE consists of several independent modules:

• dune-common

• dune-grid

• dune-istl

• dune-grid-howto

• dune-grid-dev-howto

Single modules can depend on other modules and so the DUNE modules form a dependency graph.
The build system has to track and resolve these inter-module dependencies.

The build system is structured as follows:

• Each module is built using the GNU AutoTools.

• Each module has a set of modules it depends on, these modules have to be built before building
the module itself.

• Each module has a file dune.module which holds dependencies and other information regarding
the module.

• The modules can be built in the appropriate order using the dunecontrol script (shipped with
dune-common)

The reasons to use the GNU AutoTools for DUNE were the following

• We need platform independent build.

• Enabling or disabling of certain features depending on features present on the system.

• Creations of libraries on all platforms.

• Easy creation of portable but flexible Makefiles.

The reasons to add the dunecontrol script and the dune.module description files were

• One tool to setup all modules (the AutoTools can only work on one module).

• Automatic dependency tracking.

• Automatic collection of command-line parameters (configure needs special command-line pa-
rameters for all modules it uses)

7



4 Building Single Modules Using the GNU AutoTools

4 Building Single Modules Using the GNU AutoTools

Software is generally developed to be used on multiple platforms. Since each of these platforms has
different compilers, different header files, there is a need to write makefiles and build scripts that work
on a variety of platforms. The Free Software Foundation (FSF), faced with this problem, devised a
set of tools to generate makefiles and build scripts that work on a variety of platforms. These are the
GNU AutoTools. If you have downloaded and built any GNU software from source, you are familiar
with the configure script. The configure script runs a series of tests to get information about your
machine.

The autotools simplify the generation of portable Makefiles and configure scripts.

autoconf

autoconf is used to create the configure script. configure is created from configure.ac, using a
set of m4 files.

configure.ac m4/*.m4

autoconf

configure

How to write a configure.ac for DUNE is described in Sec. 4.2.

automake

automake is used to create the Makefile.in files (needed for configure) from Makefile.am files, using
a set of include files located in a directory called am. These include files provide additional features
not provided by the standard automake (see Sec. 4.1.2). The am directory is in the dune-common

module and each module intending to use one of these includes has to have a symlink am that points
to dune-common/am. This link is usually created by dune-autogen (see Sec. 4.3).

Makefile.am am/*

automake

Makefile.in

configure

Makefile

Information on writing a Makefile.am is described in 4.1

libtool

libtool is a wrapper around the compiler and linker. It offers a generic interface for creating static
and shared libraries, regardless of the platform it is running on.
libtool hides all the platform specific aspects of library creation and library usage. When linking

a library or an executable you (or automake) can call the compiler via libtool. libtool will then
take care of

8



4 Building Single Modules Using the GNU AutoTools

• platform specific command-line parameters for the linker,

• library dependencies.

configure

configure will run the set of tests specified in your configure.ac. Using the results of these tests
configure can check that all necessary features (libraries, programs, etc.) are present and can activate
and deactivate certain features of the module depending on what is available on your system.

For example configure in dune-grid will search for the ALUGrid library and enable or disable
Dune::ALU3dGrid. This is done by writing a preprocessor macro #define HAVE_ALUGRID in the
config.h header file. A header file can then use an #ifdef statement to disable parts of the code that
do not work without a certain feature. This can be used in the applications as well as in the headers
of a DUNE module.

The config.h file is created by configure from a config.h.in file, which is automatically created
from the list of tests used in the configure.ac.

4.1 Makefile.am

4.1.1 Overview

Let’s start off with a simple program hello built from hello.c. As automake is designed to build and
install a package it needs to know

• what programs it should build,

• where to put them when installing,

• which sources to use.

The core of a Makefile.am thus looks like this:

noinst_PROGRAMS = hello

hello_SOURCES = hello.c

This would build hello but not install it when make install is called. Using bin_PROGRAMS instead
of noinst_PROGRAMS would install the hello-binary into a prefix /bin directory.

Building more programs with several source files works like this

noinst_PROGRAMS = hello bye

hello_SOURCES = common.c common.h hello.c

bye_SOURCES = common.c common.h bye.c parser.y lexer.l

automake has more integrated rules than the standard make, the example above would automatically
use yacc/lex to create parser.c/lexer.c and build them into the bye binary.

Make-Variables may be defined and used as usual:

noinst_PROGRAMS = hello bye

COMMON = common.c common.h

hello_SOURCES = $(COMMON) hello.c

bye_SOURCES = $(COMMON) bye.c parser.y lexer.l

9



4 Building Single Modules Using the GNU AutoTools

Even normal make-rules may be used in a Makefile.am.

Using flags

Compiler/linker/preprocessor-flags can be set either globally:

noinst_PROGRAMS = hello bye

AM_CPPFLAGS = -DDEBUG

hello_SOURCES = hello.c

bye_SOURCES = bye.c

or locally:

noinst_PROGRAMS = hello bye

hello_SOURCES = hello.c

hello_CPPFLAGS = -DHELLO

bye_SOURCES = bye.c

bye_CPPFLAGS = -DBYE

The local setting overrides the global one, thus

hello_CPPFLAGS = $(AM_CPPFLAGS) -Dmyflags

may be a good idea.
It is even possible to compile the same sources with different flags:

noinst_PROGRAMS = hello bye

hello_SOURCES = generic -greeting.c

hello_CPPFLAGS = -DHELLO

bye_SOURCES = generic -greeting.c

bye_CPPFLAGS = -DBYE

Perhaps you’re wondering why the above examples used AM CPPFLAGS instead of the normal CPPFLAGS?
The reason for this is that the variables CFLAGS, CPPFLAGS, CXXFLAGS etc. are considered user variables

which may be set on the commandline:

make CXXFLAGS="-O2000"

This would override any settings in Makefile.am which might be necessary to build. Thus, if the
variables should be set even if the user wishes to modify the values, you should use the AM * version.

The real compile-command always uses both AM VAR and VAR . Options that autoconf finds are stored
in the user variables (so that they may be overridden)

Commonly used variables are:

• AM CPPFLAGS: flags for the C-Preprocessor. This includes preprocessor defines like -DNDEBUG and
include pathes like -I/usr/local/package/include

• AM CFLAGS, AM CXXFLAGS: flags for the compiler (-g, -O, ...). One difference between these and
the CPPFLAGS is that the linker will get CFLAGS/CXXFLAGS and LDFLAGS but not CPPFLAGS

• AM LDFLAGS options for the linker

• LDADD: libraries to link to a binary

• LIBADD: libraries to add to a library

10



4 Building Single Modules Using the GNU AutoTools

• SOURCES: list of source-files (may include headers as well)

Conditional builds

Some parts of DUNE only make sense if certain addon-packages were found. autoconf therefore defines
conditionals which automake can use:

if OPENGL

PROGS = hello glhello

else

PROGS = hello

endif

hello_SOURCES = hello.c

glhello_SOURCES = glhello.c hello.c

This will only build the glhello program if OpenGL was found. An important feature of these
conditionals is that they work with any make program, even those without a native if construct like
GNU-make.

Default targets

An automake-generated Makefile does not only know the usual all, clean and install targets but also

• tags travel recursively through the directories and create TAGS-files which can be used in many
editors to quickly find where symbols/functions are defined (use emacs-format)

• ctags the same as ”tags” but uses the vi-format for the tags-files

• dist create a distribution tarball

• distcheck create a tarball and do a test-build if it really works

4.1.2 Building Documentation

If you want to build documentation you might need additional make rules. DUNE offers a set of
predefined rules to create certain kinds of documentation. Therefor you have to include the appropriate
rules from the am/ directory. These rules are stored in the dune-common/am/ directory. If you want
to use these any of these rules in your DUNE module or application you will have to create a symbolic
link to dune-common/am/. The creation of this link should be done by the dune-autogen script.

html pages

Webpages are created from wml sources, using the program wml (http://thewml.org/).
$(top srcdir)/am/webstuff contains the necessary rules.

11

http://thewml.org/


4 Building Single Modules Using the GNU AutoTools

Listing 1 (File Makefile.am)

# $Id : Make f i l e .am 5388 2008−12−03 09:51 :16Z sander $

# a l so bu i l d the se sub d i r e c t o r i e s
SUBDIRS = devel doxygen layout buildsystem

# only b u i l d html pages , i f documentation i s enab led
if BUILD_DOCS

# only b u i l d html when wml i s a v a i l a b l e
if WML

PAGES = view -concept.html installation -notes.html

endif

endif

# automat i ca l l y c rea t e the se web pages
all: $(PAGES)

# s e t t i n g l i k e in dune−web
CURDIR=doc

# pos i t i on o f the web base d i r ec tory ,
# r e l a t i v e to $ (CURDIR)
BASEDIR =..

EXTRAINSTALL=example.opts

# i n s t a l l the html pages
docdir=$(datadir )/doc/dune -common

doc_DATA = $(PAGES) example.opts

EXTRA_DIST = $(PAGES) example.opts

if ! BUILD_DOCS

# add tag to no t i f y t ha t d i s t has been bu i l d wi thout documentation
dist -hook:

echo "# No documentation  included in distribution! " > $(distdir )/$(DOCUMENTATION_TAG_FILE )

endif

# inc lude r u l e s f o r wml −> html trans format ion
include $(top_srcdir )/am/webstuff

# remove html pages on ‘ ‘make clean ’ ’
SVNCLEANFILES = $(PAGES)

clean -local:

if test -e $(top_srcdir )/doc/doxygen/Doxydep; then rm -rf $(SVNCLEANFILES ); fi

# inc lude f u r t h e r r u l e s needed by Dune
include $(top_srcdir )/am/global -rules

LATEXdocuments

In order to compile LATEXdocuments you can include $(top srcdir)/am/latex. This way you get
rules for creation of DVI files, PS files and PDF files.

SVG graphics

SVG graphics can be converted to png, in order to include them into the web page. This conversion
can be done using inkscape (http://www.inkscape.org/). $(top srcdir)/am/inkscape.am offers
the necessary rules.

12

http://www.inkscape.org/


4 Building Single Modules Using the GNU AutoTools

4.2 configure.ac

configure.ac is a normal text file that contains several autoconf macros. These macros are evaluated
my the m4 macro processor and transformed into a shell script.

Listing 2 (File dune-common/configure.ac)

#! / bin /bash
# $Id : con f i gure . ac 5403 2009−01−21 10:11 :40Z sander $

# Process t h i s f i l e wi th autoconf to produce a con f i gure s c r i p t .

DUNE_AC_INIT # ge t s module ver s ion from dune . module f i l e
AM_INIT_AUTOMAKE

AC_CONFIG_SRCDIR ([ common/stdstreams.cc])

AM_CONFIG_HEADER ([ config.h])

# crea t e symlink dune −> $ t o p s r c d i r
DUNE_SYMLINK

# add con f i gure f l a g s needed to crea t e l o g f i l e s f o r dune−au tobu i l d
DUNE_AUTOBUILD_FLAGS

# check a l l dune dependec ies and p r e r e q u i s i t s
DUNE_CHECK_ALL

# pre s e t v a r i a b l e to path such tha t #inc lude <dune /. . . > works
AC_SUBST ([ DUNE_COMMON_ROOT], ’$(top_builddir )’)

AC_SUBST ([ AM_CPPFLAGS], ’-I$(top_srcdir )’)

AC_SUBST ([ LOCAL_LIBS], ’$(top_builddir )/ common/libcommon.la ’)

# wri t e output
AC_CONFIG_FILES ([ Makefile

lib/Makefile

bin/Makefile

common/Makefile

common/test/Makefile

common/exprtmpl/Makefile

doc/Makefile

doc/devel/Makefile

doc/layout/Makefile

doc/doxygen/Makefile

doc/doxygen/Doxyfile

doc/buildsystem/Makefile

m4/Makefile

am/Makefile

bin/wmlwrap

bin/check -log -store

dune -common.pc])

AC_OUTPUT

# make s c r i p t s e x e cu t a b l e
chmod +x bin/wmlwrap

chmod +x bin/check -log -store

# pr in t r e s u l t s
DUNE_SUMMARY_ALL

We offer a set of macros that can be used in your configure.ac:

• DUNE CHECK ALL runs all checks usually needed by a DUNE module. It checks for all dependen-
cies and suggestions and for their prerequisites. In order to make the dependencies known to
configure dune-autogen calls dunecontrol m4create and write a file dependencies.m4.

13



4 Building Single Modules Using the GNU AutoTools

• DUNE SYMLINK creates symlink $(top srcdir)/dune→ $(top srcdir). The programming guide-
lines (7) require that the include statements be like #include <dune/...>. If your module has a
directory structure $(top srcdir)/foo, you will need such a link. However, you are encouraged
to store the files directly in a directory structure $(top srcdir)/dune/foo in order to avoid any
inconvenience when copying the files. This will also eliminate the necessity for DUNE SYMLINK.

• DUNE AUTOBUILD FLAGS adds configure flags needed to create log files for dune-autobuild. If
you want to add your module to the dune-autobuild system, you have to call this macro.

• DUNE SUMMARY ALL prints information on the results of all major checks run by DUNE CHECK ALL.

DUNE CHECK ALL and DUNE CHECK ALL M define certain variables that can be used in the configure

script or in the Makefile.am:

• DUNE MODULE CPPFLAGS

• DUNE MODULE LDFLAGS

• DUNE MODULE LIBS

• DUNE MODULE ROOT

The last step to a complete configure.ac is that you tell autoconf which files should be generated
by configure. Therefor you add an AC CONFIG FILES([WhiteSpaceSeparatedListOfFiles ]) state-
ment to your configure.ac. The list of files should be the list of files that are to be generated, not
the input – i.e. you would write

AC_CONFIG_FILES ([ Makefile doc/Makefile ])

end not

AC_CONFIG_FILES ([ Makefile.in doc/Makefile.in])

After you told autoconf which files to create you have to actually trigger their creation with command
AC OUTPUT

4.3 dune-autogen

The dune-autogen script is used to bring the freshly checked out module into that state that you
expect from a module received via the tarball. That means it runs all necessary steps so that you can
call configure to setup your module. In the case of DUNE this means that dune-autogen runs

• libtoolize (prepare the module for libtool)

• dunecontrol m4create (create an m4 file containing the dependencies of this module)

• aclocal (collect all autoconf macros needed for this module)

• autoheader (create the config.h.in)

• automake (create the Makefile.in)

• autoconf (create configure)

If needed it will also create the symbolic link to the dune-common/am/ directory (see 4.1.2).

14



5 Building Sets of Modules Using dunecontrol

4.4 m4 files

m4 files contain macros which are then composed into configure and are run during execution of
configure.

private m4 macros

You can add new tests to configure by providing additional macro files in the directory module/m4/.

dependencies.m4

$(top srcdir)/dependencies.m4 hold all information about the dependencies and suggestions of this
module. It is an automatically generated file. It is generated by dunecontrol m4create.

For each dependencies of your module MODULE CHECKS and MODULE CHECK MODULE is called. Last
MODULE CHECKS is called for your module, in order to check all prerequisites for your module.

What you just read implies that you have to provide the two macros MODULE CHECKS and MODULE CHECK MODULE

for your module. These should be written to a m4/*.m4 file.
Here follows an example for the module dune-foo:

AC_DEFUN ([ DUNE_FOO_CHECKS ])

AC_DEFUN ([ DUNE_FOO_CHECK_MODULE ],[

DUNE_CHECK_MODULES ([dune -foo], dnl module name

[foo/foo.hh], dnl header file

[Dune:: FooFnkt ]) dnl symbol in libdunefoo

])

The first one calls all checks required to make use of dune-foo. The dependency checks are not to
be included, they are run automatically. The second macro tells how to check for your module. In case
you are only writing an application and don’t want to make this module available to other modules,
you can just leave it empty. If you have to provide some way to find your module. The easiest is to
use the DUNE CHECK MODULES macro, which is defined in dune-common/m4/dune.m4.

5 Building Sets of Modules Using dunecontrol

dunecontrol helps you building the different DUNE modules in the appropriate order. Each module
has a dune.module file which contains information on the module needed by dunecontrol.
dunecontrol searches for dune.module files recursively from where you are executing the program.

For each DUNE module found it will execute a dunecontrol command. All commands offered by
dunecontrol have a default implementation. This default implementation can be overwritten and
extended in the dune.module file.

The commands you are interested in right now are

• autogen runs dune-autogen for each module. A list of directories containing dune.module files
and the parameters given on the commandline are passed as parameters to dune-autogen.

• configure runs configure for each module. --with-dunemodule parameters are created for a
set of known DUNE modules.

• make runs make for each module.

• all runs dune-autogen, configure and make for each module.

15



5 Building Sets of Modules Using dunecontrol

In order to build DUNE the first time you will need the all command. In pseudo code all does the
following:

foreach ($module in $Modules) {

foreach (command in {autogen ,configure ,make) {

run $command in $module

}

}

This differs from calling

dunecontrol autogen

dunecontrol configure

dunecontrol make

as it ensures that i.e. dune-common is fully built before configure is executed in dune-grid. Otherwise
configure in dune-grid would complain that libcommon.la from dune-common is missing.

Further more you can add parameters to the commands; these parameters get passed on to the
program being executed. Assuming you want to call make clean in all DUNE modules you can execute

dunecontrol make clean

opts files

You can also let dunecontrol read the command parameters from a file. For each command you
can specify parameters. The parameters are stored in a variable called COMMAND FLAGS with COMMAND

written in capital letters.

Listing 3 (File example.opts)

# use the se op t ions f o r con f i gure i f no op t ions a prov ided on the cmdline
AUTOGEN_FLAGS ="--ac =2.50 --am=-1.8"

CONFIGURE_FLAGS ="CXX=g++-3.4 --prefix=’/tmp/Hu Hu ’"

MAKE_FLAGS=install

When you specify an opts file and command line parameters

dunecontrol --opts=some.opts configure --with -foo=bar

dunecontrol will ignore the parameters specified in the opts file and you will get a warning.

environment variables

You can further control the behavior of dunecontrol by certain environment variables.

• DUNE CONTROL PATH specifies the paths, where dunecontrol is searching for modules. All entries
have to be colon separated and should point to either a directory (which is search recursively for
dune.module files) or a directly dune.module file.

• DUNE OPTS FILE specifies the opts file that should be read by dunecontrol. This variable will
be overwritten by the --opts= option.

• MAKE tells dunecontrol which command to invoke for ’make’. This can be useful for example, if
you want to use gmake as a make drop-in.

• GREP tells dunecontrol which command to invoke for ’grep’.

16



6 Creating a new DUNE project

dune.module

The dune.module file is split into two parts. First we have the parameter section where you specify
parameters describing the module. Then we have the command section where you can overload the
default implementation of a command called via dunecontrol.

Listing 4 (File dune.module)

# parameters f o r dune con t ro l
Module: dune_grid

Depends: dune_common

Suggests: UG Alberta Alu3d

# over load the run con f i gure command
run_configure () {

# l e t s extend the parameter l i s t $CMD FLAGS
if test "x$HAVE_UG" == "xyes"; then

CMD_FLAGS="$CMD_FLAGS \"--with -ug=$PATH_UG\""

fi

if test "x$HAVE_Alberta" == "xyes"; then

CMD_FLAGS="$CMD_FLAGS \"--with -alberta=$PATH_Alberta \""

fi

if test "x$HAVE_Alu3d" == "xyes"; then

CMD_FLAGS="$CMD_FLAGS \"--with -alugrid=$PATH_Alu3d\""

fi

# c a l l the d e f a u l t implementation
run_default_configure

}

The parameter section will be parsed by dunecontrol will effect i.e. the order in which the modules
are built. The parameters and their values are separated by colon. Possible parameters are

• Module (required) is the name of the module. The name is of the form [a-zA-Z0-9 ]+.

• Depends (required) takes a space separated list of required modules. This module is not functional
without these other modules.

• Suggests (optional) takes a space separated list of optional modules. This module is functional
without these other modules, but can offer further functionality if one or more of the suggested
modules are found.

The command section lets you overload the default implementation provided by dunecontrol. For
each command dunecontrol call the function run command . The parameters from the commandline
or the opts file are store in the variable $CMD FLAGS. If you just want to create additional parameters
you can add these to $CMD FLAGS and then call the default implementation of the command via
run default command .

6 Creating a new DUNE project

From a buildsystem point of view there is no difference between a DUNE application and a DUNE module.

DUNE modules are packages that offer a certain functionality that can be used by DUNE applications.
Therefore DUNE modules offer libraries and/or header files. A DUNE module needs to comply with
certain rules (see 7).

17



7 Dune module guidelines

Creating a new DUNE project has been covered in detail in 2 using duneproject to take work off of
the user. This is also the recommended way to start a new project. If for whatever reasons you do
not wish to use duneproject here is the bare minimum you have to provide in order to create a new
project:

• a dune.module file
Usually you will only need to specify the parameters Module and Depends.

• Note: an dune-autogen script is not needed any more!

• a basic m4 file
You need to provide two macros MODULE CHECKS and MODULE CHECK MODULE.

• a configure.ac file
Have look at the configure.ac in dune-grid for example. The most important part is the
call to DUNE CHECK ALL which runs all checks needed for a DUNE module, plus the checks for the
dependencies.

7 Dune module guidelines

A DUNE module should comply with the following rules:

• Documentation is located under doc/ and gets web-installed under BASEDIR/doc/.

• automake includes are located in dune-common. To use them, you will have to make a sym-
bolic link to dune-common/am/ (see 4.1.2). The symlink creation should be handled by the
dune-autogen (see 4.3).

• The am/ directory does not get included in the tarball.

• Header files that can be used by other DUNE modules should be accessible via #include <dune/foo/bar.hh>.
In order to work with a freshly checkout version of your module you will usually need to create a
local symbolic link dune -> module-directory/ . This link gets created by the DUNE SYMLINK

command in your configure.ac. When running make install all header files should be in-
stalled into prefix /include/dune/.

8 Further documentation

automake & Makefile.am

http://www.gnu.org/software/automake/manual/

The automake manual describes in detail how to write and maintain a Makefile.am and the usage of
automake.

autoconf & configure.ac

http://www.gnu.org/software/autoconf/manual/

The autoconf manual covers the usage of autoconf and how to write configure.ac files (sometimes
they are called configure.in).

18

http://www.gnu.org/software/automake/manual/
http://www.gnu.org/software/autoconf/manual/


8 Further documentation

Autoconf Macro Archive

http://autoconf-archive.cryp.to/

The Autoconf Macro Archive provides macros that can be integrated in your configure.ac in order
to search for certain software. These macros are useful to many software writers using the autoconf
tool, but too specific to be included into autoconf itself.

libtool

http://www.gnu.org/software/libtool/manual.html

The libtool manual offers further information on the usage of libtool package and gives a good
overview of the different problems/aspects of creating portable libraries.

autobook

http://sources.redhat.com/autobook/

The autobook is a complete book describing the GNU toolchain (autoconf, automake and libtool).
It contains many recipes on how to use the autotools. The book is available as an online version.

dune-project

http://www.dune-project.org/

The official homepage of DUNE.

19

http://autoconf-archive.cryp.to/
http://www.gnu.org/software/libtool/manual.html
http://sources.redhat.com/autobook/
http://www.dune-project.org/

	Getting started
	Creating your own DUNE module
	The Structure of DUNE
	Building Single Modules Using the GNU AutoTools
	Makefile.am
	Overview
	Building Documentation

	configure.ac
	dune-autogen
	m4 files

	Building Sets of Modules Using dunecontrol
	Creating a new DUNE project
	Dune module guidelines
	Further documentation

